Global attractor of a differentiable autonomous system on the plane
Nguyen Van Chau
Annales Polonici Mathematici, Tome 62 (1995), p. 143-154 / Harvested from The Polish Digital Mathematics Library

We study the structure of a differentiable autonomous system on the plane with non-positive divergence outside a bounded set. It is shown that under certain conditions such a system has a global attractor. The main result here can be seen as an improvement of the results of Olech and Meisters in [7,9] concerning the global asymptotic stability conjecture of Markus and Yamabe and the Jacobian Conjecture.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262725
@article{bwmeta1.element.bwnjournal-article-apmv62z2p143bwm,
     author = {Nguyen Van Chau},
     title = {Global attractor of a differentiable autonomous system on the plane},
     journal = {Annales Polonici Mathematici},
     volume = {62},
     year = {1995},
     pages = {143-154},
     zbl = {0835.34053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv62z2p143bwm}
}
Nguyen Van Chau. Global attractor of a differentiable autonomous system on the plane. Annales Polonici Mathematici, Tome 62 (1995) pp. 143-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv62z2p143bwm/

[000] [1] V. I. Arnold and Yu. S. Il'yashenko, Ordinary differential equations. I, in: Dynamical Systems I, Ordinary Differential Equations and Smooth Dynamical Systems, D. V. Anosov and V. I. Arnold (eds.), Springer, New York, 1988, 7-149.

[001] [2] H. Bass, E. F. Connell and D. Wright, The Jacobian Conjecture, Bull. Amer. Math. Soc. 7 (1982), 287-330. | Zbl 0539.13012

[002] [3] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-204. | Zbl 0107.14602

[003] [4] O. H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.

[004] [5] L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J. 12 (1960), 305-317. | Zbl 0096.28802

[005] [6] D. J. Newman, One-one polynomial maps, Proc. Amer. Math. Soc. 11 (1960), 867-870. | Zbl 0103.01102

[006] [7] C. Olech, On the global stability of an autonomous system on the plane, in: Contributions to Differential Equations 1 (1963), 389-400.

[007] [8] C. Olech, Global phase-portrait of a plane autonomous system, Ann. Inst. Fourier (Grenoble) 14 (1964), 87-98.

[008] [9] C. Olech and M. Meisters, Solution of the global asymptotic stability Jacobian Conjecture for the polynomial case, in: Analyse Mathématique et Applications, Gauthier-Villars, Paris, 1988, 373-381.