Using a generalization of [Pol] we present a description of complex geodesics in arbitrary complex ellipsoids.
@article{bwmeta1.element.bwnjournal-article-apmv62z1p83bwm, author = {Armen Edigarian}, title = {On extremal mappings in complex ellipsoids}, journal = {Annales Polonici Mathematici}, volume = {62}, year = {1995}, pages = {83-96}, zbl = {0851.32025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv62z1p83bwm} }
Armen Edigarian. On extremal mappings in complex ellipsoids. Annales Polonici Mathematici, Tome 62 (1995) pp. 83-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv62z1p83bwm/
[000] [Hay-Ken] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I, Academic Press, 1976. | Zbl 0419.31001
[001] [Jar-Pfl] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993.
[002] [Jar-Pfl-Zei] M. Jarnicki, P. Pflug, and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543. | Zbl 0812.32010
[003] [Pan] M.-Y. Pang, Smoothness of the Kobayashi metric of non-convex domains, Internat. J. Math. 4 (1993), 953-987. | Zbl 0795.32008
[004] [Pfl-Zwo] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, preprint, 1994.
[005] [Pol] E. A. Poletskiĭ, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disk, Michigan Math. J. 30 (1983), 317-333.
[006] [Zei] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. I: Fixed-Point Theorems, Springer, 1986.