The pseudometric of Hahn is identical to the Kobayashi-Royden pseudometric on domains of dimension greater than two. Thus injective hyperbolicity coincides with ordinary hyperbolicity in this case.
@article{bwmeta1.element.bwnjournal-article-apmv62z1p79bwm, author = {Marius Overholt}, title = {Injective hyperbolicity of domains}, journal = {Annales Polonici Mathematici}, volume = {62}, year = {1995}, pages = {79-82}, zbl = {0847.32027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv62z1p79bwm} }
Marius Overholt. Injective hyperbolicity of domains. Annales Polonici Mathematici, Tome 62 (1995) pp. 79-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv62z1p79bwm/
[000] [1] K. T. Hahn, Some remarks on a new pseudo-differential metric, Ann. Polon. Math. 39 (1981), 71-81. | Zbl 0476.32031
[001] [2] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970, p. 77.
[002] [3] C. D. Minda, The Hahn metric on Riemann surfaces, Kodai Math. J. 6 (1983), 57-69. | Zbl 0524.30013
[003] [4] Y.-T. Siu, All plane domains are Banach-Stein, Manuscripta Math. 14 (1974), 101-105. | Zbl 0294.32010
[004] [5] E. Vesentini, Injective hyperbolicity, Ricerche Mat., Suppl. Vol. 36 (1987), 99-109.
[005] [6] J.-P. Vigué, Une remarque sur l'hyperbolicité injective, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 83 (1989), 57-61. | Zbl 0741.32019
[006] [7] J. Zhang, Metric S on holomorphy domain, Kexue Tongbao 33 (5) (1988), 353-356. | Zbl 0673.32024