Effective formulas for complex geodesics in generalized pseudoellipsoids with applications
Włodzimierz Zwonek
Annales Polonici Mathematici, Tome 62 (1995), p. 261-294 / Harvested from The Polish Digital Mathematics Library

We introduce a class of generalized pseudoellipsoids and we get formulas for their complex geodesics in the convex case. Using these formulas we get a description of automorphisms of the pseudoellipsoids. We also solve the problem of biholomorphic equivalence of convex complex ellipsoids without any sophisticated machinery.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262346
@article{bwmeta1.element.bwnjournal-article-apmv61z3p261bwm,
     author = {W\l odzimierz Zwonek},
     title = {Effective formulas for complex geodesics in generalized pseudoellipsoids with applications},
     journal = {Annales Polonici Mathematici},
     volume = {62},
     year = {1995},
     pages = {261-294},
     zbl = {0841.32016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv61z3p261bwm}
}
Włodzimierz Zwonek. Effective formulas for complex geodesics in generalized pseudoellipsoids with applications. Annales Polonici Mathematici, Tome 62 (1995) pp. 261-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv61z3p261bwm/

[000] [B] S. Bell, The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1983), 685-691. | Zbl 0482.32007

[001] [BFKKMP] B. E. Blank, D. Fan, D. Klein, S. G. Krantz, D. Ma and M.-Y. Pang, The Kobayashi metric of a complex ellipsoid in ℂ², Experimental Math. 1 (1992), 47-55. | Zbl 0783.32012

[002] [D] S. Dineen, The Schwarz Lemma, Clarendon Press, 1989. | Zbl 0708.46046

[003] [DT] S. Dineen and R. M. Timoney, Complex geodesics on convex domains, in: Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, J. Horváth and M. Maestre (eds.), Elsevier, 1992, 333-365. | Zbl 0785.46044

[004] [DP] G. Dini and A. S. Primicerio, Localization principle of automorphisms on generalized pseudoellipsoids, preprint. | Zbl 0943.32006

[005] [Ga] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

[006] [Ge] G. Gentili, Regular complex geodesics in the domain Dn=(z,...,zn)n:|z|+...+|zn|<1, in: Lecture Notes in Math. 1275, Springer, 1987, 235-252.

[007] [JP] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993. | Zbl 0789.32001

[008] [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543. | Zbl 0812.32010

[009] [KU] W. Kaup and H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129-133. | Zbl 0337.32012

[010] [KKM] A. Kodama, S. Krantz and D. Ma, A characterization of generalized complex ellipsoids in n and related results, Indiana Univ. Math. J. 41 (1992), 173-195.

[011] [L] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-479.

[012] [N] T. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. RIMS Kyoto Univ. 4 (1968), 527-543. | Zbl 0199.41101

[013] [P] E. A. Poletskii, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disk, Michigan Math. J. 30 (1983), 317-333.

[014] [R] W. Rudin, Holomorphic maps that extend to automorphisms of a ball, Proc. Amer. Math. Soc. 81 (1981), 429-432. | Zbl 0497.32011