Weak and strong topologies and integral equations in Banach spaces
Donal O'Regan
Annales Polonici Mathematici, Tome 62 (1995), p. 245-260 / Harvested from The Polish Digital Mathematics Library

The Schauder-Tikhonov theorem in locally convex topological spaces and an extension of Krasnosel’skiĭ’s fixed point theorem due to Nashed and Wong are used to establish existence of Lα and C solutions to Volterra and Hammerstein integral equations in Banach spaces.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262401
@article{bwmeta1.element.bwnjournal-article-apmv61z3p245bwm,
     author = {Donal O'Regan},
     title = {Weak and strong topologies and integral equations in Banach spaces},
     journal = {Annales Polonici Mathematici},
     volume = {62},
     year = {1995},
     pages = {245-260},
     zbl = {0831.45006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv61z3p245bwm}
}
Donal O'Regan. Weak and strong topologies and integral equations in Banach spaces. Annales Polonici Mathematici, Tome 62 (1995) pp. 245-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv61z3p245bwm/

[000] [1] D. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. | Zbl 0175.44903

[001] [2] J. K. Brooks and N. Dinculeanu, Weak compactness in spaces of Bochner integrable functions and applications, Adv. in Math. 24 (1977), 172-188. | Zbl 0354.46026

[002] [3] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.

[003] [4] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, New York, 1990.

[004] [5] C. Corduneanu, Perturbations of linear abstract Volterra equations, J. Integral Equations Appl. 2 (1990), 393-401.

[005] [6] C. Corduneanu, Abstract Volterra equations and weak topologies, in: Delay Differential Equations and Dynamical Systems, S. Busenberg and M. Martelli (eds.), Lecture Notes in Math. 1475, Springer, 110-116.

[006] [7] J. B. Conway, A Course in Functional Analysis, Springer, Berlin, 1990. | Zbl 0706.46003

[007] [8] D. G. DeFigueiredo and L. A. Karlovitz, On the radial projection in normed spaces, Bull. Amer. Math. Soc. 73 (1967), 364-368. | Zbl 0172.16102

[008] [9] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.

[009] [10] J. Dugundji and A. Granas, Fixed Point Theory, Monograf. Mat. 61, PWN, Warszawa, 1982.

[010] [11] N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publ. Inc., Wiley, New York, 1958.

[011] [12] C. F. Dunkl and K. S. Williams, A simple norm inequality, Amer. Math. Monthly 71 (1964), 53-54.

[012] [13] G. Gripenberg, S. O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge Univ. Press, New York, 1990. | Zbl 0695.45002

[013] [14] R. B. Guenther and J. W. Lee, Some existence results for nonlinear integral equations via topological transversality, J. Integral Equations Appl. 5 (1993), 195-209. | Zbl 0781.45003

[014] [15] R. H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976.

[015] [16] M. Z. Nashed and J. S. W. Wong, Some variants of a fixed point theorem of Krasnosel'skiĭ and applications to nonlinear integral equations, J. Math. Mech. 18 (1969), 767-777. | Zbl 0181.42301

[016] [17] K. Yosida, Functional Analysis, Springer, Berlin, 1971.