In a recent paper Fournier and Ruscheweyh established a theorem related to a certain functional. We extend their result differently, and then use it to obtain a precise upper bound on α so that for f analytic in |z| < 1, f(0) = f'(0) - 1 = 0 and satisfying Re{zf''(z)} > -λ, the function f is starlike.
@article{bwmeta1.element.bwnjournal-article-apmv61z2p135bwm, author = {Rosihan M. Ali and S. Ponnusamy and Vikramaditya Singh}, title = {Starlikeness of functions satisfying a differential inequality}, journal = {Annales Polonici Mathematici}, volume = {62}, year = {1995}, pages = {135-140}, zbl = {0818.30006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv61z2p135bwm} }
Rosihan M. Ali; S. Ponnusamy; Vikramaditya Singh. Starlikeness of functions satisfying a differential inequality. Annales Polonici Mathematici, Tome 62 (1995) pp. 135-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv61z2p135bwm/
[000] [1] R. Fournier and S. Ruscheweyh, On two extremal problems related to univalent functions, Rocky Mountain J. Math. 24 (1994), 529-538. | Zbl 0818.30013
[001] [2] S. Ruscheweyh, Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc, Trans. Amer. Math. Soc. 210 (1975), 63-74. | Zbl 0311.30011
[002] [3] S. Ruscheweyh, Convolution in Geometric Function Theory, Les Presses de l'Université de Montréal, Montréal, 1982.