Asymptotic properties of various semidynamical systems can be examined by means of continuous subadditive processes. To investigate such processes we consider different types of exponents: characteristic, central, singular and global exponents and we study their properties. We derive formulae for central and singular exponents and show that they provide upper bounds for characteristic exponents. The concept of conjugate processes introduced in this paper allows us to find lower bounds for characteristic exponents. We also give applications to continuous cocycles.
@article{bwmeta1.element.bwnjournal-article-apmv61z2p101bwm, author = {Wojciech S\l omczy\'nski}, title = {Continuous subadditive processes and formulae for Lyapunov characteristic exponents}, journal = {Annales Polonici Mathematici}, volume = {62}, year = {1995}, pages = {101-134}, zbl = {0819.34036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv61z2p101bwm} }
Wojciech Słomczyński. Continuous subadditive processes and formulae for Lyapunov characteristic exponents. Annales Polonici Mathematici, Tome 62 (1995) pp. 101-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv61z2p101bwm/
[000] [1] H. D. I. Abarbanel, R. Brown and M. B. Kennel, Variation of Lyapunov exponents on a strange attractor, J. Nonlinear Sci. 1 (1991), 175-199. | Zbl 0797.58053
[001] [2] J. C. Alexander and J. A. Yorke, Fat baker's transformations, Ergodic Theory Dynamical Systems 4 (1984), 1-23. | Zbl 0553.58020
[002] [3] G. Benettin, L. Galgani and J.-M. Strelcyn, Kolmogorov entropy and numerical experiments, Phys. Rev. A 14 (1976), 411-418.
[003] [4] G. Benettin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems; a method for computing all of them, Part 1: Theory, Meccanica 15 (1980), 9-20; Part 2: Numerical application, Phys. Rev. A, 21-29. | Zbl 0488.70015
[004] [5] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181-202. | Zbl 0311.58010
[005] [6] L. A. Bunimovich, Statistical properties of Lorenz attractors, in: Nonlinear Dynamics and Turbulence, G. I. Barenblatt, G. Iooss and D. D. Joseph (eds.), Pitman, Boston, Mass., 1983. | Zbl 0578.58025
[006] [7] L. A. Bunimovich and Ya. G. Sinaĭ, Stochasticity of the attractor in the Lorenz model, in: Nonlinear Waves, A. V. Gaponov-Grekhov (ed.), Nauka, Moscow, 1979, 212-226.
[007] [8] B. F. Bylov, R. È. Vinograd, D. M. Grobman and V. V. Nemytskiĭ, Theory of Lyapunov Exponents, Nauka, Moscow, 1966 (in Russian).
[008] [9] A. Carverhill, Flows of stochastic dynamical systems: Ergodic theory, Stochastics 14 (1985), 273-317. | Zbl 0536.58019
[009] [10] P. Constantin and C. Foiaş, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math. 38 (1985), 1-27. | Zbl 0582.35092
[010] [11] H. Crauel, Lyapunov exponents and invariant measures of stochastic systems on manifolds, in: Lyapunov Exponents, Proceedings, Bremen 1984, L. Arnold and V. Wihstutz (eds.), Lecture Notes in Math. 1186, Springer, 1986, 271-291.
[011] [12] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Wiley, New York, 1958.
[012] [13] J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys. 57 (1985), 617-656. | Zbl 0989.37516
[013] [14] A. Eden, Local Lyapunov exponents and a local estimate of Hausdorff dimension, RAIRO Modél. Math. Anal. Numér. 23 (1989), 405-413. | Zbl 0684.58022
[014] [15] A. Eden, Local estimates for the Hausdorff dimension of an attractor, J. Math. Anal. Appl. 150 (1990), 100-119. | Zbl 0714.58035
[015] [16] J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system, Phys. D 4 (1982), 366-393. | Zbl 1194.37052
[016] [17] J. D. Farmer, E. Ott and J. A. Yorke, The dimension of chaotic attractors, Phys. D 7 (1983), 153-180. | Zbl 0561.58032
[017] [18] P. Frederickson, J. L. Kaplan, E. D. Yorke and J. A. Yorke, The Liapunov dimension of strange attractors, J. Differential Equations 49 (1983), 185-207. | Zbl 0515.34040
[018] [19] C. Froeschle, The Lyapunov characteristic exponents and applications, J. Méc. Théor. Appl. Numéro spécial (1984), 101-132. | Zbl 0583.58021
[019] [20] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, 1981. | Zbl 0459.28023
[020] [21] C. Grebogi, E. Ott and J. A. Yorke, Crises, sudden changes in chaotic attractors, and transient chaos, Phys. D 7 (1983), 181-200. | Zbl 0561.58029
[021] [22] M. R. Herman, Construction d'un difféomorphisme minimal d'entropie topologique non nulle, Ergodic Theory Dynamical Systems 1 (1981), 65-76. | Zbl 0469.58008
[022] [23] R. A. Johnson, Ergodic theory and linear differential equations, J. Differential Equations 28 (1978), 23-34. | Zbl 0399.34039
[023] [24] R. A. Johnson, K. J. Palmer and G. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal. 18 (1987), 1-33. | Zbl 0641.58034
[024] [25] Yu. Kifer, Characteristic exponents of dynamical systems in metric spaces, Ergodic Theory Dynamical Systems 3 (1982), 119-127. | Zbl 0525.34035
[025] [26] Yu. Kifer, Ergodic Theory of Random Transformations, Birkhäuser, Boston, 1986. | Zbl 0604.28014
[026] [27] J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B 30 (1968), 499-510. | Zbl 0182.22802
[027] [28] J. F. C. Kingman, Subadditive ergodic theory, Ann. Probab. 1 (1973), 883-909. | Zbl 0311.60018
[028] [29] J. F. C. Kingman, Subadditive processes, in: Ecole d'Eté de Probabilités de Saint-Flour V-1975, Lecture Notes in Math. 539, Springer, 1976, 167-223.
[029] [30] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[030] [31] F. Ledrappier, Some relations between dimension and Lyapounov exponents, Comm. Math. Phys. 81 (1981), 229-238. | Zbl 0486.58021
[031] [32] R. Ma né, Oseledec's theorem from the generic viewpoint, in: Proceedings Internat. Congress Math., Warszawa 1983, PWN, Warszawa, 1984, 1269-1276.
[032] [33] V. M. Millonshchikov, Typical properties of conditional exponential stability IV, VIII, Differentsial'nye Uravneniya 20 (1984), 241-257, 1366-1376 (in Russian); English transl.: Differential Equations 20 (1984), 187-201, 1005-1014.
[033] [34] V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trudy Moskov. Mat. Obshch. 19 (1968), 179-210 (in Russian); English transl.: Trans. Moscow Math. Soc. 19 (1968), 197-231.
[034] [35] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. | Zbl 0153.19101
[035] [36] M. S. Ranghunathan, A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math. 32 (1979), 356-362. | Zbl 0415.28013
[036] [37] D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 275-306. | Zbl 0426.58014
[037] [38] D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. 115 (1982), 243-290. | Zbl 0493.58015
[038] [39] S. H. Saperstone, Semidynamical Systems in Infinite Dimensional Spaces, Springer, New York, 1981. | Zbl 0487.34044
[039] [40] M. A. Shereshevsky, Lyapunov exponents for one-dimensional cellular automata, J. Nonlinear Sci. 2 (1992), 1-8. | Zbl 0872.58038
[040] [41] I. Shimada and T. Nagashima, A numerical approach to ergodic problem of dissipative dynamical systems, Progr. Theoret. Phys. 61 (1979), 1605-1616. | Zbl 1171.34327
[041] [42] W. Słomczyński, Subadditive ergodic theorems in C(X), Riv. Mat. Pura Appl., to appear. | Zbl 0819.34036
[042] [43] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. | Zbl 0662.35001
[043] [44] P. Thieullen, Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems, J. Dynamics Differential Equations 4 (1992), 127-159. | Zbl 0744.34047
[044] [45] R. È. Vinograd, On the central characteristic exponent of a system of differential equations, Mat. Sb. 42 (84) (1957), 207-222 (in Russian).
[045] [46] P. Walters, Unique ergodicity and random matrix products, in: Lyapunov Exponents, Proceedings, Bremen 1984, L. Arnold and V. Wihstutz (eds.), Lecture Notes in Math. 1186, Springer, 1986, 37-55.
[046] [47] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Phys. D 16 (1985), 285-317. | Zbl 0585.58037