A topological version of Bertini's theorem
Artur Piękosz
Annales Polonici Mathematici, Tome 62 (1995), p. 89-93 / Harvested from The Polish Digital Mathematics Library

We give a topological version of a Bertini type theorem due to Abhyankar. A new definition of a branched covering is given. If the restriction πV:VY of the natural projection π: Y × Z → Y to a closed set V ⊂ Y × Z is a branched covering then, under certain assumptions, we can obtain generators of the fundamental group π₁((Y×Z).

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262230
@article{bwmeta1.element.bwnjournal-article-apmv61z1p89bwm,
     author = {Artur Pi\k ekosz},
     title = {A topological version of Bertini's theorem},
     journal = {Annales Polonici Mathematici},
     volume = {62},
     year = {1995},
     pages = {89-93},
     zbl = {0828.57004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv61z1p89bwm}
}
Artur Piękosz. A topological version of Bertini's theorem. Annales Polonici Mathematici, Tome 62 (1995) pp. 89-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv61z1p89bwm/

[000] [1] S. S. Abhyankar, Local Analytic Geometry, Academic Press, New York and London, 1964.

[001] [2] A. Piękosz, Basic definitions and properties of topological branched coverings, to appear. | Zbl 0891.57004