Factorization of uniformly holomorphic functions
Luiza A. Moraes ; Otilia W. Paques ; M. Carmelina F. Zaine
Annales Polonici Mathematici, Tome 62 (1995), p. 1-11 / Harvested from The Polish Digital Mathematics Library

Let E be a complex Hausdorff locally convex space such that the strong dual E’ of E is sequentially complete, let F be a closed linear subspace of E and let U be a uniformly open subset of E. We denote by Π: E → E/F the canonical quotient mapping. In §1 we study the factorization of uniformly holomorphic functions through π. In §2 we study F-quotients of uniform type and introduce the concept of envelope of uF-holomorphy of a connected uniformly open subset U of E. The main result states that the pull-back ε*u(U) of the envelope of uniform holomorphy of Π(U) constructed by Paques and Zaine [9] is the envelope of uF-holomorphy of U.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262358
@article{bwmeta1.element.bwnjournal-article-apmv61z1p1bwm,
     author = {Luiza A. Moraes and Otilia W. Paques and M. Carmelina F. Zaine},
     title = {Factorization of uniformly holomorphic functions},
     journal = {Annales Polonici Mathematici},
     volume = {62},
     year = {1995},
     pages = {1-11},
     zbl = {0821.46060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv61z1p1bwm}
}
Luiza A. Moraes; Otilia W. Paques; M. Carmelina F. Zaine. Factorization of uniformly holomorphic functions. Annales Polonici Mathematici, Tome 62 (1995) pp. 1-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv61z1p1bwm/

[000] [1] R. Aron, L. Moraes and R. Ryan, Factorization of holomorphic mappings in infinite dimensions, Math. Ann. 277 (1987), 617-628. | Zbl 0611.46053

[001] [2] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981. | Zbl 0484.46044

[002] [3] P. Hilton, Tópicos de Álgebra Homológica, 8º Colóquio Brasileiro de Matemática, IME-Universidade de S ao Paulo, Brasil, 1971.

[003] [4] L. Moraes, O. W. Paques and M. C. F. Zaine, F-quotients and envelope of F-holomorphy, J. Math. Anal. Appl. 163 (2) (1992), 393-405. | Zbl 0789.46041

[004] [5] J. Mujica, Domain of holomorphy in (DFC)-spaces, in: Functional Analysis, Holomorphy and Approximation Theory, Lecture Notes in Math. 843, Springer, Berlin, 1980, 500-533.

[005] [6] L. Nachbin, Uniformité d'holomorphie et type exponentiel, in: Séminaire P. Lelong 1970, Lectures Notes in Math. 205, Springer, Berlin, 1971, 216-224. | Zbl 0218.46024

[006] [7] L. Nachbin, Recent developments in infinite dimensional holomorphy, Bull. Amer. Math. Soc. 79 (1973), 625-640. | Zbl 0279.32017

[007] [8] L. Nachbin, On pure uniform holomorphy in spaces of holomorphic germs, Results in Math. 8 (1985), 117-122. | Zbl 0613.46030

[008] [9] O. W. Paques and M. C. Zaine, Uniformly holomorphic continuation, J. Math. Anal. Appl. 123 (2) (1987), 448-454. | Zbl 0631.46043

[009] [10] M. Schottenloher, The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition, Ann. Inst. Fourier (Grenoble) 26 (4) (1976), 207-237. | Zbl 0309.32013