For α ≥ 0 let denote the class of functions defined for |z| < 1 by integrating if α > 0, and log(1/(1-xz)) if α = 0, against a complex measure on |x| = 1. We study families of starlike functions where zf’(z)/f(z) ranges over a parabola with given focus and vertex. We prove a number of properties of these functions, among others that they are bounded and that they belong to . In general, it is only known that bounded starlike functions belong to for α > 0.
@article{bwmeta1.element.bwnjournal-article-apmv60z3p289bwm, author = {Frode R\o nning}, title = {Integral representations of bounded starlike functions}, journal = {Annales Polonici Mathematici}, volume = {62}, year = {1995}, pages = {289-297}, zbl = {0818.30008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z3p289bwm} }
Frode Rønning. Integral representations of bounded starlike functions. Annales Polonici Mathematici, Tome 62 (1995) pp. 289-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z3p289bwm/
[000] [1] D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431-443. | Zbl 0177.33403
[001] [2] L. Brickman, T. H. MacGregor and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91-107. | Zbl 0227.30013
[002] [3] P. L. Duren, Theory of Spaces, Academic Press, New York, 1970. | Zbl 0215.20203
[003] [4] W. Gröbner und N. Hofreiter, Integraltafel, 2ter Teil, Bestimmte Integrale, Springer, Wien, 1958.
[004] [5] R. A. Hibschweiler and T. H. MacGregor, Closure properties of families of Cauchy-Stieltjes transforms, Proc. Amer. Math. Soc. 105 (1989), 615-621. | Zbl 0669.30028
[005] [6] R. A. Hibschweiler and T. H. MacGregor, Univalent functions with restricted growth and Cauchy-Stieltjes integrals, Complex Variables Theory Appl. 15 (1990), 53-63. | Zbl 0703.30015
[006] [7] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proc. Internat. Conf. of Complex Analysis, to appear. | Zbl 0823.30007
[007] [8] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), 165-175. | Zbl 0760.30004
[008] [9] T. H. MacGregor, Analytic and univalent functions with integral representation involving complex measures, Indiana Univ. Math. J. 36 (1987), 109-130. | Zbl 0644.30009
[009] [10] F. Rønning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, to appear. | Zbl 0879.30004
[010] [11] F. Rønning, On starlike functions associated with parabolic regions, ibid. 45 (14) (1991), 117-122. | Zbl 0769.30011
[011] [12] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196. | Zbl 0805.30012