The graph of a totally geodesic foliation
Robert A. Wolak
Annales Polonici Mathematici, Tome 62 (1995), p. 241-247 / Harvested from The Polish Digital Mathematics Library

We study the properties of the graph of a totally geodesic foliation. We limit our considerations to basic properties of the graph, and from them we derive several interesting corollaries on the structure of leaves.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:262505
@article{bwmeta1.element.bwnjournal-article-apmv60z3p241bwm,
     author = {Robert A. Wolak},
     title = {The graph of a totally geodesic foliation},
     journal = {Annales Polonici Mathematici},
     volume = {62},
     year = {1995},
     pages = {241-247},
     zbl = {0831.53020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z3p241bwm}
}
Robert A. Wolak. The graph of a totally geodesic foliation. Annales Polonici Mathematici, Tome 62 (1995) pp. 241-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z3p241bwm/

[000] [1] R. A. Blumenthal and J. J. Hebda, De Rham decomposition theorem for foliated manifolds, Ann. Inst. Fourier (Grenoble) 33 (1983), 183-198. | Zbl 0487.57010

[001] [2] R. A. Blumenthal and J. J. Hebda, Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations, Quart. J. Math. Oxford 35 (1984), 383-392. | Zbl 0572.57016

[002] [3] R. A. Blumenthal and J. J. Hebda, Ehresmann connections for foliations, Indiana Univ. Math. J. 33 (1984), 597-611. | Zbl 0511.57021

[003] [4] G. Cairns, Feuilletages géodésiques, thèse, Université du Languedoc, Montpellier, 1987.

[004] [5] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Parts A and B, Vieweg, Braunschweig, 1981, 1983. | Zbl 0486.57002

[005] [6] D. L. Johnson and L. B. Whitt, Totally geodesic foliations, J. Differential Geom. 15 (1980), 225-235. | Zbl 0444.57017

[006] [7] J. Plante, Foliations with measure preserving holonomy, Ann. of Math. 102 (1975), 327-361. | Zbl 0314.57018

[007] [8] H. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (1983), 51-75. | Zbl 0526.53039

[008] [9] H. Winkelnkemper, The number of ends of the universal leaf of a Riemannian foliation, in: Differential Geometry, Proc., Special Year, Maryland 1981-82, R. Brooks (ed.), Birkhäuser, 1983, 247-254.

[009] [10] R. A. Wolak, Foliations admitting transverse systems of differential equations, Compositio Math. 67 (1988), 89-101. | Zbl 0649.57027

[010] [11] R. A. Wolak, Le graphe d'un feuilletage admettant un système d'équations différentielles, Math. Z. 201 (1989), 177-182. | Zbl 0645.57022

[011] [12] R. A. Wolak, Geometric Structures on Foliated Manifolds, Universidad de Santiago de Compostela, 1989 | Zbl 0838.53029

[012] [0] P. Dazord et G. Hector, Intégration symplectique des variétés de Poisson totalement asphériques, in: Symplectic Geometry, Groupoids and Integrable Systems, MSRI Lecture Notes 20, 1991, 37-72