Let a and b be fixed real numbers such that 0 < mina,b < 1 < a + b. We prove that every function f:(0,∞) → ℝ satisfying f(as + bt) ≤ af(s) + bf(t), s,t > 0, and such that must be of the form f(t) = f(1)t, t > 0. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the -norm.
@article{bwmeta1.element.bwnjournal-article-apmv60z3p221bwm, author = {Janusz Matkowski and Marek Pycia}, title = {Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm}, journal = {Annales Polonici Mathematici}, volume = {62}, year = {1995}, pages = {221-230}, zbl = {0824.39010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z3p221bwm} }
Janusz Matkowski; Marek Pycia. Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm. Annales Polonici Mathematici, Tome 62 (1995) pp. 221-230. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z3p221bwm/
[000] [1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl. 31, Cambridge University Press, Cambridge, Sydney, 1989. | Zbl 0685.39006
[001] [2] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, R.I., 1957. | Zbl 0078.10004
[002] [3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's equation and Jensen's inequality, Prace Nauk. Uniw. Śl. 489, Polish Scientific Publishers, 1985.
[003] [4] J. Matkowski, On a characterization of -norm, Ann. Polon. Math. 50 (1989), 137-144. | Zbl 0703.46022
[004] [5] J. Matkowski, A functional inequality characterizing convex functions, conjugacy and a generalization of Hölder's and Minkowski's inequalities, Aequationes Math. 40 (1990), 168-180. | Zbl 0715.39013
[005] [6] J. Matkowski, Functional inequality characterizing nonnegative concave functions in (0,∞), ibid. 43 (1992), 219-224. | Zbl 0756.39017
[006] [7] J. Matkowski, The converse of the Minkowski's inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), 663-675. | Zbl 0704.46020
[007] [8] J. Matkowski, -like paranorms, in: Selected Topics in Functional Equations and Iteration Theory, Proc. Austrian-Polish Seminar, Graz, 1991, Grazer Math. Ber. 316 (1992), 103-135.