For a submanifold of of any codimension the notion of type number is introduced. Under the assumption that the type number is greater than 1 an equivalence theorem is proved.
@article{bwmeta1.element.bwnjournal-article-apmv60z3p211bwm, author = {Pawe\l\ Witowicz}, title = {An equivalence theorem for submanifolds of higher codimensions}, journal = {Annales Polonici Mathematici}, volume = {62}, year = {1995}, pages = {211-219}, zbl = {0828.53010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z3p211bwm} }
Paweł Witowicz. An equivalence theorem for submanifolds of higher codimensions. Annales Polonici Mathematici, Tome 62 (1995) pp. 211-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z3p211bwm/
[000] [1] C. B. Allendoerfer, Rigidity for spaces of class greater than one, Amer. J. Math. 61 (1939), 633-644. | Zbl 0021.15803
[001] [2] F. Dillen, Equivalence theorems in affine differential geometry, Geom. Dedicata 32 (1988), 81-92. | Zbl 0684.53012
[002] [3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II (Appendix), Wiley, New York, 1969. | Zbl 0175.48504
[003] [4] K. Nomizu and U. Pinkall, Cubic form theorem for affine immersions, Results in Math. 13 (1988), 338-362.
[004] [5] B. Opozda, Some equivalence theorems in affine hypersurface theory, Monatsh. Math. 113 (1992), 245-254. | Zbl 0776.53007
[005] [6] M. Spivak, A Copmprehensive Introduction to Differential Geometry, Vol. 5, Publish or Perish, 1979, 361-369.