The system of Abel equations α(ft(x)) = α(x) + λ(t), t ∈ T, is studied under the general assumption that are pairwise commuting homeomorphisms of a real interval and have no fixed points (T is an arbitrary non-empty set). A result concerning embeddability of rational iteration groups in continuous groups is proved as a simple consequence of the obtained theorems.
@article{bwmeta1.element.bwnjournal-article-apmv60z2p119bwm, author = {W. Jarczyk and K. \L oskot and M. C. Zdun}, title = {Commuting functions and simultaneous Abel equations}, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {119-135}, zbl = {0828.39006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z2p119bwm} }
W. Jarczyk; K. Łoskot; M. C. Zdun. Commuting functions and simultaneous Abel equations. Annales Polonici Mathematici, Tome 60 (1994) pp. 119-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z2p119bwm/
[00000] [1] J. Dugundji and A. Granas, Fixed Point Theory, Vol. 1, Monografie Mat. 61, Polish Scientific Publishers, Warszawa, 1982. | Zbl 0483.47038
[00001] [2] W. Jarczyk, A recurrent method of solving iterative functional equations, Prace Naukowe Uniw. Śląsk. Katowic. 1206, Katowice, 1991. | Zbl 0741.39006
[00002] [3] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, Polish Scientific Publishers, Warszawa, 1968.
[00003] [4] M. C. Zdun, Note on commutable functions, Aequationes Math. 36 (1988), 153-164. | Zbl 0662.39004
[00004] [5] M. C. Zdun, On simultaneous Abel equations, Aequationes Math. 38 (1989), 163-177.
[00005] [6] M. C. Zdun, On the orbits of disjoint groups of continuous functions, Rad. Mat., to appear.
[00006] [7] M. C. Zdun, Some remarks on the iterates of commuting functions, in: European Conference on Iteration Theory, Lisbon, 1991, J. P. Lampreia et al. (eds.), World Scientific, Singapore, 1992, 336-342.