We investigate univalent holomorphic functions f defined on the unit disk 𝔻 such that f(𝔻) is a hyperbolically convex subset of 𝔻; there are a number of analogies with the classical theory of (euclidean) convex univalent functions. A subregion Ω of 𝔻 is called hyperbolically convex (relative to hyperbolic geometry on 𝔻) if for all points a,b in Ω the arc of the hyperbolic geodesic in 𝔻 connecting a and b (the arc of the circle joining a and b which is orthogonal to the unit circle) lies in Ω. We give several analytic characterizations of hyperbolically convex functions. These analytic results lead to a number of sharp consequences, including covering, growth and distortion theorems and the precise upper bound on |f''(0)| for normalized (f(0) = 0 and f'(0) > 0) hyperbolically convex functions. In addition, we find the radius of hyperbolic convexity for normalized univalent functions mapping 𝔻 into itself. Finally, we suggest an alternate definition of "hyperbolic linear invariance" for locally univalent functions f: 𝔻 → 𝔻 that parallels earlier definitions of euclidean and spherical linear invariance.
@article{bwmeta1.element.bwnjournal-article-apmv60z1p81bwm, author = {Wancang Ma and David Minda}, title = {Hyperbolically convex functions}, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {81-100}, zbl = {0818.30010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z1p81bwm} }
Wancang Ma; David Minda. Hyperbolically convex functions. Annales Polonici Mathematici, Tome 60 (1994) pp. 81-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z1p81bwm/
[000] [1] P. Duren, Univalent Functions, Grundlehren Math. Wiss. 259, Springer, New York, 1983.
[001] [2] B. Flinn and B. Osgood, Hyperbolic curvature and conformal mapping, Bull. London Math. Soc. 18 (1986), 272-276. | Zbl 0594.30008
[002] [3] A. W. Goodman, Univalent Functions, Vols. I and II, Mariner, Tampa, 1983.
[003] [4] M. Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1-60.
[004] [5] W. Ma, D. Mejia and D. Minda, Distortion theorems for hyperbolically and spherically k-convex functions, in: Proc. Internat. Conf. on New Trends in Geometric Function Theory and Applications, R. Parvatham and S. Ponnusamy (eds.), World Sci., Singapore, 1991, 46-54. | Zbl 0742.30010
[005] [6] W. Ma and D. Minda, Euclidean linear invariance and uniform local convexity, J. Austral. Math. Soc. Ser. A 52 (1992), 401-418. | Zbl 0780.30010
[006] [7] W. Ma and D. Minda, Hyperbolic linear invariance and hyperbolic k-convexity, J. Austral. Math. Soc. Ser. A to appear. | Zbl 0838.30022
[007] [8] W. Ma and D. Minda, Spherical linear invariance and uniform local spherical convexity, in: Current Topics in Geometric Function Theory, H. M. Srivastava and S. Owa (eds.), World Sci., Singapore, 1993, 148-170. | Zbl 0982.30500
[008] [9] D. Mejia and D. Minda, Hyperbolic geometry in hyperbolically k-convex regions, Rev. Colombiana Mat. 25 (1991), 123-142. | Zbl 0784.53006
[009] [10] D. Minda, A reflection principle for the hyperbolic metric and applications to geometric function theory, Complex Variables Theory Appl. 8 (1987), 129-144. | Zbl 0576.30022
[010] [11] D. Minda, Applications of hyperbolic convexity to euclidean and spherical convexity, J. Analyse Math. 49 (1987), 90-105. | Zbl 0638.30007
[011] [12] B. Osgood, Some properties of f''/f' and the Poincaré metric, Indiana Univ. Math. J. 31 (1982), 449-461. | Zbl 0503.30014
[012] [13] G. Pick, Über die konforme Abbildung eines Kreises auf eines schlichtes und zugleich beschränktes Gebiete, S.-B. Kaiserl. Akad. Wiss. Wien 126 (1917), 247-263. | Zbl 46.0553.01
[013] [14] Ch. Pommerenke, Linear-invariante Familien analytischer Funktionen I, Math. Ann. 155 (1964), 108-154. | Zbl 0128.30105
[014] [15] E. Study, Konforme Abbildung einfachzusammenhängender Bereiche, Vorlesungen über ausgewählte Gegenstände der Geometrie, Heft 2, Teubner, Leipzig und Berlin, 1913.
[015] [16] K.-J. Wirths, Coefficient bounds for convex functions of bounded type, Proc. Amer. Math. Soc. 103 (1988), 525-530. | Zbl 0655.30014