The main result of this paper is the following: if a compact subset E of is UPC in the direction of a vector then E has the Markov property in the direction of v. We present a method which permits us to generalize as well as to improve an earlier result of Pawłucki and Pleśniak [PP1].
@article{bwmeta1.element.bwnjournal-article-apmv60z1p69bwm, author = {Miros\l aw Baran}, title = {Markov inequality on sets with polynomial parametrization}, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {69-79}, zbl = {0824.41014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z1p69bwm} }
Mirosław Baran. Markov inequality on sets with polynomial parametrization. Annales Polonici Mathematici, Tome 60 (1994) pp. 69-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z1p69bwm/
[000] [B1] M. Baran, Bernstein type theorems for compact sets in , J. Approx. Theory 69 (1992), 156-166. | Zbl 0748.41008
[001] [B2] M. Baran, Complex equilibrium measure and Bernstein type theorems for compact sets in , Proc. Amer. Math. Soc., to appear.
[002] [B3] M. Baran, Plurisubharmonic extremal function and complex foliation for a complement of a convex subset of , Michigan Math. J. 39 (1992), 395-404.
[003] [B4] M. Baran, Bernstein type theorems for compact sets in revisited, J. Approx. Theory, to appear.
[004] [C] E. W. Cheney, Introduction to Approximation Theory, New York, 1966. | Zbl 0161.25202
[005] [G] P. Goetgheluck, Inégalité de Markov dans les ensembles effilés, J. Approx. Theory 30 (1980), 149-154. | Zbl 0457.41015
[006] [PP1] W. Pawłucki and W. Pleśniak, Markov’s inequality and functions with polynomial cusps, Math. Ann. 275 (1986), 467-480. | Zbl 0579.32020
[007] [PP2] W. Pawłucki and W. Pleśniak, Extension of functions from sets with polynomial cusps, Studia Math. 88 (1989), 279-287. | Zbl 0778.26010
[008] [P] W. Pleśniak, Markov’s inequality and the existence of an extension operator for functions, J. Approx. Theory 61 (1990), 106-117. | Zbl 0702.41023
[009] [S] J. Siciak, Extremal plurisubharmonic functions in , Ann. Polon. Math. 39 (1981), 175-211. | Zbl 0477.32018
[010] [Z] M. Zerner, Développement en série de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sci. Paris 268 (1969), 218-220. | Zbl 0189.14601