Existence theorems for a semilinear elliptic boundary value problem
Salvatore A. Marano
Annales Polonici Mathematici, Tome 60 (1994), p. 57-67 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262476
@article{bwmeta1.element.bwnjournal-article-apmv60z1p57bwm,
     author = {Salvatore A. Marano},
     title = {Existence theorems for a semilinear elliptic boundary value problem},
     journal = {Annales Polonici Mathematici},
     volume = {60},
     year = {1994},
     pages = {57-67},
     zbl = {0826.35146},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z1p57bwm}
}
Salvatore A. Marano. Existence theorems for a semilinear elliptic boundary value problem. Annales Polonici Mathematici, Tome 60 (1994) pp. 57-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z1p57bwm/

[00000] [1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.

[00001] [2] A. Alvino e G. Trombetti, Sulle migliori costanti di maggiorazione per una classe di equazioni ellitiche degeneri e non, Ricerche Mat. 30 (1981), 15-33. | Zbl 0489.35013

[00002] [3] H. Amann, Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems, in: Lecture Notes in Math. 543, Springer, 1976, 1-55.

[00003] [4] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis and V. V. Obukhovskii, Multivalued mappings, J. Soviet Math. 24 (1984), 719-791. | Zbl 0529.54013

[00004] [5] K. C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math. 33 (1980), 117-146. | Zbl 0405.35074

[00005] [6] K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. | Zbl 0487.49027

[00006] [7] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983. | Zbl 0562.35001

[00007] [8] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. | Zbl 0296.28003

[00008] [9] J. K. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. | Zbl 0325.35038

[00009] [10] S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc. 45 (1992), 249-260. | Zbl 0741.34008

[00010] [11] J. Mawhin, J. R. Ward, Jr., and M. Willem, Variational methods and semilinear elliptic equations, Arch. Rational Mech. Anal. 95 (1986), 269-277. | Zbl 0656.35044

[00011] [12] C. Miranda, Partial Differential Equations of Elliptic Type, 2nd revised ed., Springer, 1970. | Zbl 0198.14101

[00012] [13] O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type Ψ(u)(t) ∈ F(t,Φ(u)(t)) and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. | Zbl 0687.47044

[00013] [14] C. A. Stuart, Maximal and minimal solutions of elliptic differential equations with discontinuous nonlinearities, Math. Z. 163 (1978), 239-249. | Zbl 0403.35036

[00014] [15] C. A. Stuart and J. F. Toland, A variational method for boundary value problems with discontinuous nonlinearities, J. London Math. Soc. 21 (1980), 319-328. | Zbl 0434.35042

[00015] [16] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 697-718. | Zbl 0341.35031

[00016] [17] M. Zuluaga, Existence of solutions for some elliptic problems with critical Sobolev exponents, Rev. Mat. Iberoamericana 5 (1989), 183-193. | Zbl 0741.35018