We introduce several types of notions of dis persive, completely unstable, Poisson unstable and Lagrange uns table pseudo-processes. We try to answer the question of how many (in the sense of Baire category) pseudo-processes with each of these properties can be defined on the space . The connections are discussed between several types of pseudo-processes and their limit sets, prolongations and prolongational limit sets. We also present examples of applications of the above results to pseudo-processes generated by differential equations.
@article{bwmeta1.element.bwnjournal-article-apmv60z1p33bwm, author = {J. K\l apyta}, title = {Some families of pseudo-processes}, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {33-45}, zbl = {0857.54038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z1p33bwm} }
J. Kłapyta. Some families of pseudo-processes. Annales Polonici Mathematici, Tome 60 (1994) pp. 33-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z1p33bwm/
[000] [1] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer, Berlin, 1970.
[001] [2] C. M. Dafermos, An invariant principle for compact processes, J. Differential Equations 9 (1971), 239-252.
[002] [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
[003] [4] R. C. Haworth and R. A. McCoy, Baire spaces, Dissertationes Math. 141 (1977). | Zbl 0344.54001
[004] [5] J. Kłapyta, A classification of dynamical systems, Ann. Polon. Math. 53 (1991), 109-121. | Zbl 0739.54020
[005] [6] A. Pelczar, Stability questions in generalized processes and in pseudo-dynamical systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom Phys. 21 (1973), 541-549. | Zbl 0268.54046
[006] [7] A. Pelczar, Limit sets and prolongations in pseudo-processes, Univ. Iagell. Acta Math. 27 (1988), 169-186. | Zbl 0675.54038
[007] [8] A. Pelczar, General Dynamical Systems, Monographs of the Jagiellonian University, No. 293, Kraków, 1978 (in Polish).
[008] [9] J. Szarski, Differential Inequalities, PWN, Warszawa, 1967.