Derivative and antiderivative operators and the size of complex domains
Luis Bernal-González
Annales Polonici Mathematici, Tome 60 (1994), p. 267-274 / Harvested from The Polish Digital Mathematics Library

We prove some conditions on a complex sequence for the existence of universal functions with respect to sequences of certain derivative and antiderivative operators related to it. These operators are defined on the space of holomorphic functions in a complex domain. Conditions for the equicontinuity of those sequences are also studied. The conditions depend upon the size of the domain.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262351
@article{bwmeta1.element.bwnjournal-article-apmv59z3p267bwm,
     author = {Luis Bernal-Gonz\'alez},
     title = {Derivative and antiderivative operators and the size of complex domains},
     journal = {Annales Polonici Mathematici},
     volume = {60},
     year = {1994},
     pages = {267-274},
     zbl = {0843.47019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv59z3p267bwm}
}
Luis Bernal-González. Derivative and antiderivative operators and the size of complex domains. Annales Polonici Mathematici, Tome 60 (1994) pp. 267-274. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv59z3p267bwm/

[000] [1] C. Blair and L. A. Rubel, A universal entire function, Amer. Math. Monthly 90 (1983), 331-332. | Zbl 0534.30029

[001] [2] C. Blair and L. A. Rubel, A triply universal entire function, Enseign. Math. 30 (1984), 269-274. | Zbl 0559.30033

[002] [3] S. M. Duios Ruis, Universal functions of the structure of the space of entire functions, Soviet Math. Dokl. 30 (1984), 713-716.

[003] [4] R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288. | Zbl 0618.30031

[004] [5] G. Godefroy and J. H. Shapiro, Operators with dense, invariants, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-269. | Zbl 0732.47016

[005] [6] K. G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987).

[006] [7] K. G. Grosse-Erdmann, On the universal functions of G. R. MacLane, Complex Variables Theory Appl. 15 (1990), 193-196. | Zbl 0682.30021

[007] [8] J. Horváth, Topological Vector Spaces, Vol. 1, Addison-Wesley, Reading, 1966.

[008] [9] W. Luh, Approximation by antiderivatives, Constr. Approx. 2 (1986), 179-187. | Zbl 0615.30034

[009] [10] G. R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2 (1952), 72-87. | Zbl 0049.05603

[010] [11] J. C. Oxtoby, Measure and Category, 2nd ed., Springer, New York, 1980. | Zbl 0435.28011

[011] [12] W. Rudin, Real and Complex Analysis, 2nd ed., Tata McGraw-Hill, Faridabad, 1974. | Zbl 0278.26001