We prove that every set definable in the structure can be decomposed into finitely many connected analytic manifolds each of which is also definable in this structure.
@article{bwmeta1.element.bwnjournal-article-apmv59z3p255bwm, author = {Ta L\^e Loi}, title = {Analytic cell decomposition of sets definable in the structure $$\mathbb{R}$\_{exp}$ }, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {255-266}, zbl = {0806.32001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv59z3p255bwm} }
Ta Lê Loi. Analytic cell decomposition of sets definable in the structure $ℝ_{exp}$ . Annales Polonici Mathematici, Tome 60 (1994) pp. 255-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv59z3p255bwm/
[000] [1] Z. Denkowska, S. Łojasiewicz and J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536. | Zbl 0435.32006
[001] [2] L. van den Dries, Tame topology and O-minimal structures, mimeographed notes, 1991.
[002] [3] L. van den Dries and C. Miller, On the real exponential field with restricted analytic functions, Israel J. Math. 85 (1994), 19-56. | Zbl 0823.03017
[003] [4] A. G. Khovanskiĭ, On a class of systems of transcendental equations, Dokl. Akad. Nauk SSSR 255 (1980), 804-807 (in Russian).
[004] [5] A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monographs 88, Amer. Math. Soc., 1991.
[005] [6] J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc. 295 (1986), 593-605. | Zbl 0662.03024
[006] [7] T. L. Loi, -regular points of sets definable in the structure , preprint, 1992.
[007] [8] S. Łojasiewicz, Ensembles Semi-Analytiques, mimeographed notes, I.H.E.S., Bures-sur-Yvette, 1965.
[008] [9] J. C. Tougeron, Sur certaines algèbres de fonctions analytiques, Séminaire de géométrie algébrique réelle, Paris VII, 1986.
[009] [10] J. C. Tougeron, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskiĭ, Ann. Inst. Fourier (Grenoble) 41 (4) (1991), 823-840.
[010] [11] A. J. Wilkie, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, 1991.
[011] [12] A. J. Wilkie, Model completeness results for expansions of the real field II: The exponential function, manuscript, 1991.