It is proved that every Orlicz sequence space has the λ-property. Criteria for the uniform λ-property in Orlicz sequence spaces, with Luxemburg norm and Orlicz norm, are given.
@article{bwmeta1.element.bwnjournal-article-apmv59z3p239bwm, author = {Shutao Chen and Huiying Sun}, title = {$\lambda$-Properties of Orlicz sequence spaces}, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {239-249}, zbl = {0808.46012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv59z3p239bwm} }
Shutao Chen; Huiying Sun. λ-Properties of Orlicz sequence spaces. Annales Polonici Mathematici, Tome 60 (1994) pp. 239-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv59z3p239bwm/
[000] [1] R. M. Aron and R. H. Lohman, A geometric function determined by extreme points of the unit ball of a normed space, Pacific J. Math. 127 (1987), 209-231. | Zbl 0662.46020
[001] [2] R. M. Aron, R. H. Lohman and A. Suárez, Rotundity, the C.S.R.P., and the λ-property in Banach spaces, Proc. Amer. Math. Soc. 111 (1991), 151-155.
[002] [3] S. Chen and Y. Shen, Extreme points and rotundity of Orlicz spaces, J. Harbin Normal Univ. 2 (1985), 1-5.
[003] [4] S. Chen, H. Sun and C. Wu, λ-property of Orlicz spaces, Bull. Polish Acad. Sci. Math. 39 (1991), 63-69. | Zbl 0758.46029
[004] [5] A. Suárez, λ-property in Orlicz spaces, ibid. 37 (1989), 421-431.
[005] [6] Z. Wang, Extreme points of sequence Orlicz spaces, J. Daqing Petroleum College 1 (1983), 112-121.
[006] [7] C. Wu and H. Sun, On the λ-property of Orlicz space , Comment. Math. Univ. Carolin. 31 (1990), 731-741.
[007] [8] C. Wu, T. Wang, S. Chen and Y. Wang, Geometry of Orlicz Spaces, Harbin Institute of Technology Press, Harbin, 1986.