Applications of singularity theory give rise to many questions concerning deformations of singularities. Unfortunately, satisfactory answers are known only for simple singularities and partially for unimodal ones. The aim of this paper is to give some insight into decompositions of multi-modal singularities with unimodal leading part. We investigate the singularities which have modality k - 1 but the quasihomogeneous part of their normal form only depends on one modulus.
@article{bwmeta1.element.bwnjournal-article-apmv59z2p117bwm, author = {Piotr Jaworski}, title = {Decompositions of hypersurface singularities oftype $J\_{k,0}$ }, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {117-131}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv59z2p117bwm} }
Piotr Jaworski. Decompositions of hypersurface singularities oftype $J_{k,0}$ . Annales Polonici Mathematici, Tome 60 (1994) pp. 117-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv59z2p117bwm/
[000] [1] V. I. Arnold, S. M. Guseĭn-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Birkhäuser, 1985.
[001] [2] J. Damon, On the Pham example and the universal topological stratification of singularities, in: Singularities, Banach Center Publ. 20, PWN-Polish Scientific Publishers, Warszawa, 1988, 161-167. | Zbl 0675.58008
[002] [3] J. Damon and A. Galligo, Universal topological stratification for the Pham example, preprint. | Zbl 0784.32029
[003] [4] R. Hartshorne, Algebraic Geometry, Springer, 1977.
[004] [5] P. Jaworski, Distribution of critical values of miniversal deformations of parabolic singularities, Invent. Math. 86 (1986), 19-33. | Zbl 0578.32037
[005] [6] E. Looijenga, Semi-universal deformation of a simple elliptic hypersurface singularity, I: Unimodularity, Topology 16 (1977), 257-262. | Zbl 0373.32004
[006] [7] O. Lyashko, Decompositions of simple singularities of functions, Funktsional. Anal. i Prilozhen. 10 (2) (1976), 49-56 (in Russian).
[007] [8] F. Pham, Remarque sur l'equisingularité universelle, preprint, Univ. de Nice, 1970.
[008] [9] K. Wirtmüller, Universell topologische triviale Deformationen, thesis, University of Regensburg.