Generic properties of generalized hyperbolic partial differential equations
Dariusz Bielawski
Annales Polonici Mathematici, Tome 60 (1994), p. 107-115 / Harvested from The Polish Digital Mathematics Library

The existence and uniqueness of solutions and convergence of successive approximations are considered as generic properties for generalized hyperbolic partial differential equations with unbounded right-hand sides.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262325
@article{bwmeta1.element.bwnjournal-article-apmv59z2p107bwm,
     author = {Dariusz Bielawski},
     title = {Generic properties of generalized hyperbolic partial differential equations},
     journal = {Annales Polonici Mathematici},
     volume = {60},
     year = {1994},
     pages = {107-115},
     zbl = {0823.35107},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv59z2p107bwm}
}
Dariusz Bielawski. Generic properties of generalized hyperbolic partial differential equations. Annales Polonici Mathematici, Tome 60 (1994) pp. 107-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv59z2p107bwm/

[000] [1] A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of hyperbolic equations zxy=f(x,y,z,zx,zy), Studia Math. 15 (1956), 201-215. | Zbl 0070.09204

[001] [2] A. Bielecki, Une remarque sur l'application de la méthode de Banach-Caccioppoli-Tikhonov dans la théorie de l'équation s = f(x,y,z,p,q), Bull. Acad. Polon. Sci. Cl. III 4 (1956), 265-268. | Zbl 0070.09004

[002] [3] T. Costello, Generic properties of differential equations, SIAM J. Math. Anal. 4 (1973), 245-249. | Zbl 0225.35064

[003] [4] G. Darbo, Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. | Zbl 0064.35704

[004] [5] F. S. De Blasi and J. Myjak, Generic properties of hyperbolic partial differential equations, J. London Math. Soc. (2) 15 (1977), 113-118. | Zbl 0353.35064

[005] [6] K. Goebel, Thickness of sets in metric spaces and its application in fixed point theory, habilitation thesis, Lublin, 1970 (in Polish).

[006] [7] P. Hartman and A. Wintner, On hyperbolic partial differential equations, Amer. J. Math., 74 (1952), 834-864. | Zbl 0048.33302

[007] [8] A. Lasota and J. Yorke, The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations 13 (1973), 1-12. | Zbl 0259.34070