The existence and uniqueness of solutions and convergence of successive approximations are considered as generic properties for generalized hyperbolic partial differential equations with unbounded right-hand sides.
@article{bwmeta1.element.bwnjournal-article-apmv59z2p107bwm, author = {Dariusz Bielawski}, title = {Generic properties of generalized hyperbolic partial differential equations}, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {107-115}, zbl = {0823.35107}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv59z2p107bwm} }
Dariusz Bielawski. Generic properties of generalized hyperbolic partial differential equations. Annales Polonici Mathematici, Tome 60 (1994) pp. 107-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv59z2p107bwm/
[000] [1] A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of hyperbolic equations , Studia Math. 15 (1956), 201-215. | Zbl 0070.09204
[001] [2] A. Bielecki, Une remarque sur l'application de la méthode de Banach-Caccioppoli-Tikhonov dans la théorie de l'équation s = f(x,y,z,p,q), Bull. Acad. Polon. Sci. Cl. III 4 (1956), 265-268. | Zbl 0070.09004
[002] [3] T. Costello, Generic properties of differential equations, SIAM J. Math. Anal. 4 (1973), 245-249. | Zbl 0225.35064
[003] [4] G. Darbo, Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. | Zbl 0064.35704
[004] [5] F. S. De Blasi and J. Myjak, Generic properties of hyperbolic partial differential equations, J. London Math. Soc. (2) 15 (1977), 113-118. | Zbl 0353.35064
[005] [6] K. Goebel, Thickness of sets in metric spaces and its application in fixed point theory, habilitation thesis, Lublin, 1970 (in Polish).
[006] [7] P. Hartman and A. Wintner, On hyperbolic partial differential equations, Amer. J. Math., 74 (1952), 834-864. | Zbl 0048.33302
[007] [8] A. Lasota and J. Yorke, The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations 13 (1973), 1-12. | Zbl 0259.34070