The biregular functions in the sense of Fueter are investigated. In particular, the class of LR-biregular mappings (left regular with a right regular inverse) is introduced. Moreover, the existence of non-affine biregular mappings is established via examples. Some applications to the quaternionic manifolds are given.
@article{bwmeta1.element.bwnjournal-article-apmv59z1p53bwm, author = {W. Kr\'olikowski and R. Michael Porter}, title = {Regular and biregular functions in the sense of Fueter - some problems}, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {53-64}, zbl = {0808.53030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv59z1p53bwm} }
W. Królikowski; R. Michael Porter. Regular and biregular functions in the sense of Fueter - some problems. Annales Polonici Mathematici, Tome 60 (1994) pp. 53-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv59z1p53bwm/
[000] [1] E. Bonan, Sur les G-structures de type quaternionien, Cahiers Topologie Géom. Différentielle 9 (1967), 389-461. | Zbl 0171.20802
[001] [2] M. L. Curtis, Matrix Groups, Springer, 1984.
[002] [3] R. Fueter, Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307-330. | Zbl 61.1131.05
[003] [4] R. Fueter, Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen, ibid. 8 (1936), 371-378. | Zbl 62.0120.04
[004] [5] W. Królikowski, Quaternionic mappings and harmonicity, preprint. | Zbl 1087.58502
[005] [6] W. Królikowski and E. Ramírez de Arellano, Fueter-Hurwitz regular mappings and an integral representation, in: Clifford Algebras and their Applications in Mathematical Physics, Proceedings, Montpellier, 1989, A. Micali et al. (eds.), Kluwer Acad. Publ., Dordrecht, 1990, 221-237. | Zbl 0769.30040
[006] [7] W. Królikowski and E. Ramírez de Arellano, On polynomial solutions of the Fueter-Hurwitz equation, in: Proc. Internat. Conf. on Complex Analysis, June 1991, University of Wisconsin, Madison, A. Nagel and E. Lee Stout (eds.), Contemp. Math. 137, Amer. Math. Soc., 1992, 297-305. | Zbl 0767.30038
[007] [8] R. Narasimhan, Analysis on Real and Complex Manifolds, North-Holland, Amsterdam, 1968. | Zbl 0188.25803
[008] [9] M. V. Shapiro and N. Vasilevski, Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems, I, II, Complex Variables Theory Appl., to appear. | Zbl 0847.30033
[009] [10] A. J. Sommese, Quaternionic manifolds, Math. Ann. 212 (1975), 191-214. | Zbl 0299.53023
[010] [11] V. Souček, Holomorphicity in quaternionic analysis, Seminari di Geometria 1982-1983, Università di Bologna, Istituto de Geometria, Dipartimento de Matematica, 1984.
[011] [12] A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199-225. | Zbl 0399.30038