On the structure of the set of solutions of a Volterra integral equation in a Banach space
Krzysztof Czarnowski
Annales Polonici Mathematici, Tome 60 (1994), p. 33-39 / Harvested from The Polish Digital Mathematics Library

The set of solutions of a Volterra equation in a Banach space with a Carathéodory kernel is proved to be an δ, in particular compact and connected. The kernel is not assumed to be uniformly continuous with respect to the unknown function and the characterization is given in terms of a B₀-space of continuous functions on a noncompact domain.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262486
@article{bwmeta1.element.bwnjournal-article-apmv59z1p33bwm,
     author = {Krzysztof Czarnowski},
     title = {On the structure of the set of solutions of a Volterra integral equation in a Banach space},
     journal = {Annales Polonici Mathematici},
     volume = {60},
     year = {1994},
     pages = {33-39},
     zbl = {0828.45011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv59z1p33bwm}
}
Krzysztof Czarnowski. On the structure of the set of solutions of a Volterra integral equation in a Banach space. Annales Polonici Mathematici, Tome 60 (1994) pp. 33-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv59z1p33bwm/

[000] [1] A. Alexiewicz, Functional Analysis, PWN, Warszawa, 1969 (in Polish).

[001] [2] N. Aronszajn, Le correspondant topologique de l'unicité dans la théorie des équations différentielles, Ann. of Math. 43 (1942), 730-738. | Zbl 0061.17106

[002] [3] K. Czarnowski and T. Pruszko, On the structure of fixed point sets of compact maps in B₀ spaces with applications to integral and differential equations in unbounded domain, J. Math. Anal. Appl. 154 (1991), 151-163. | Zbl 0729.47054

[003] [4] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 596, Springer, Berlin, 1977.

[004] [5] K. Goebel, Thickness of sets in metric spaces and applications in fixed point theory, habilitation thesis, Lublin, 1970 (in Polish).

[005] [6] H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351-1371. | Zbl 0528.47046

[006] [7] J. M. Lasry et R. Robert, Analyse non linéaire multivoque, Centre de Recherche de Math. de la Décision, No. 7611, Université de Paris-Dauphine.

[007] [8] S. Szufla, On the structure of solution sets of differential and integral equations in Banach spaces, Ann. Polon. Math. 34 (1977), 165-177. | Zbl 0384.34038

[008] [9] G. Vidossich, On the structure of the set of solutions of nonlinear equations, J. Math. Anal. Appl. 34 (1971), 602-617.