The set of solutions of a Volterra equation in a Banach space with a Carathéodory kernel is proved to be an , in particular compact and connected. The kernel is not assumed to be uniformly continuous with respect to the unknown function and the characterization is given in terms of a B₀-space of continuous functions on a noncompact domain.
@article{bwmeta1.element.bwnjournal-article-apmv59z1p33bwm, author = {Krzysztof Czarnowski}, title = {On the structure of the set of solutions of a Volterra integral equation in a Banach space}, journal = {Annales Polonici Mathematici}, volume = {60}, year = {1994}, pages = {33-39}, zbl = {0828.45011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv59z1p33bwm} }
Krzysztof Czarnowski. On the structure of the set of solutions of a Volterra integral equation in a Banach space. Annales Polonici Mathematici, Tome 60 (1994) pp. 33-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv59z1p33bwm/
[000] [1] A. Alexiewicz, Functional Analysis, PWN, Warszawa, 1969 (in Polish).
[001] [2] N. Aronszajn, Le correspondant topologique de l'unicité dans la théorie des équations différentielles, Ann. of Math. 43 (1942), 730-738. | Zbl 0061.17106
[002] [3] K. Czarnowski and T. Pruszko, On the structure of fixed point sets of compact maps in B₀ spaces with applications to integral and differential equations in unbounded domain, J. Math. Anal. Appl. 154 (1991), 151-163. | Zbl 0729.47054
[003] [4] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 596, Springer, Berlin, 1977.
[004] [5] K. Goebel, Thickness of sets in metric spaces and applications in fixed point theory, habilitation thesis, Lublin, 1970 (in Polish).
[005] [6] H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351-1371. | Zbl 0528.47046
[006] [7] J. M. Lasry et R. Robert, Analyse non linéaire multivoque, Centre de Recherche de Math. de la Décision, No. 7611, Université de Paris-Dauphine.
[007] [8] S. Szufla, On the structure of solution sets of differential and integral equations in Banach spaces, Ann. Polon. Math. 34 (1977), 165-177. | Zbl 0384.34038
[008] [9] G. Vidossich, On the structure of the set of solutions of nonlinear equations, J. Math. Anal. Appl. 34 (1971), 602-617.