A new approach to the study of zeros of orthogonal polynomials with respect to an Hermitian and regular linear functional is presented. Some results concerning zeros of kernels are given.
@article{bwmeta1.element.bwnjournal-article-apmv58z3p287bwm, author = {P. Garc\'\i a L\'azaro and F. Marcell\'an}, title = {On zeros of regular orthogonal polynomials on the unit circle}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {287-298}, zbl = {0786.42012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p287bwm} }
P. García Lázaro; F. Marcellán. On zeros of regular orthogonal polynomials on the unit circle. Annales Polonici Mathematici, Tome 58 (1993) pp. 287-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p287bwm/
[000] [1] R. L. Ellis, I. Gohberg and D. C. Lay, On two theorems of M. G. Krein concerning polynomials orthogonal on the unit circle, Integral Equations Operator Theory 11 (1988), 87-103. | Zbl 0639.46026
[001] [2] T. Erdelyi, P. Nevai, J. Zhang and J. S. Geronimo, Simple proof of Favard's theorem on the unit circle, Atti Sem. Mat. Fis. Univ. Modena 29 (1991), 41-46. | Zbl 0753.33004
[002] [3] G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971.
[003] [4] P. Garcí a Lázaro, Polinomios ortogonales y distribuciones, Doctoral Dissertation, Publ. Sem. Mat. García de Galdeano, Ser. II, 32, Universidad de Zaragoza, 1990.
[004] [5] Y. L. Geronimus, Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl. Ser. 1, 3 (1962), 1-78.
[005] [6] E. Godoy and F. Marcellán, Orthogonal polynomials on the unit circle: Distribution of zeros, J. Comput. Appl. Math. 37 (1991), 265-272. | Zbl 0745.42013
[006] [7] W. B. Jones, O. Njastad and W. J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989), 113-152. | Zbl 0637.30035
[007] [8] M. G. Krein, On the distribution of the roots of polynomials which are orthogonal on the unit circle with respect to an alternating weight, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 2 (1966), 131-137.
[008] [9] H. J. Landau, Polynomials orthogonal in an indefinite metric, in: Orthogonal Matrix-Valued Polynomials and Applications, I. Gohberg (ed.), Birkhäuser, Basel, 1988, 203-214.
[009] [10] F. Marcellán, Orthogonal polynomials and Toeplitz matrices: Some applications, in: Rational Approximation and Orthogonal Polynomials, M. Alfaro (ed.), Publ. Sem. Mat. García de Galdeano, Zaragoza, 1989, 31-57.
[010] [11] F. Marcellán and M. Alfaro, Recent trends in orthogonal polynomials on the unit circle, in: Orthogonal Polynomials and their Applications, C. Brezinski et al. (eds.), IMACS Ann. Comput. Appl. Math. 9 (1991), 3-14.
[011] [12] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Providence, 1975.