Extremal coefficient properties of Pick functions are proved. Even coefficients of analytic univalent functions f with |f(z)| < M, |z| < 1, are bounded by the corresponding coefficients of the Pick functions for large M. This proves a conjecture of Jakubowski. Moreover, it is shown that the Pick functions are not extremal for a similar problem for odd coefficients.
@article{bwmeta1.element.bwnjournal-article-apmv58z3p267bwm, author = {D. V. Prokhorov}, title = {Even coefficient estimates for bounded univalent functions}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {267-273}, zbl = {0784.30010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p267bwm} }
D. V. Prokhorov. Even coefficient estimates for bounded univalent functions. Annales Polonici Mathematici, Tome 58 (1993) pp. 267-273. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p267bwm/
[000] [1] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152. | Zbl 0573.30014
[001] [2] D. Bshouty, A coefficient problem of Bombieri concerning univalent functions, Proc. Amer. Math. Soc. 91 (1984), 383-388. | Zbl 0571.30019
[002] [3] V. G. Gordenko, Sixth coefficient estimate for bounded univalent functions, in: Theory of Functions and Approximation, Proc. 6th Saratov Winter School, Saratov (in Russian), to appear.
[003] [4] Z. Jakubowski, On some extremal problems in classes of bounded univalent functions, Zeszyty Nauk. Politechn. Rzeszowskiej Mat. Fiz. 16 (2) (1984), 9-16 (in Polish). | Zbl 0579.30022
[004] [5] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[005] [6] D. V. Prokhorov, Value sets of systems of functionals in classes of univalent functions, Mat. Sb. 181 (12) (1990), 1659-1677 (in Russian). | Zbl 0717.30013
[006] [7] D. V. Prokhorov, Reachable Set Methods in Extremal Problems for Univalent Functions, Izdat. Saratov. Univ., 1992. | Zbl 0814.30016