Two different and easy proofs are presented that a hyperbolic linear homeomorphism of a Banach space admits the shadowing.
@article{bwmeta1.element.bwnjournal-article-apmv58z3p253bwm, author = {Jerzy Ombach}, title = {The simplest shadowing}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {253-258}, zbl = {0788.58049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p253bwm} }
Jerzy Ombach. The simplest shadowing. Annales Polonici Mathematici, Tome 58 (1993) pp. 253-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p253bwm/
[000] [1] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. | Zbl 0308.28010
[001] [2] M. C. Irwin, Smooth Dynamical Systems, Academic Press, 1980. | Zbl 0465.58001
[002] [3] S. Kakubari, A note on a linear homeomorphism on with the pseudo-orbit tracing property, Sci. Rep. Niigata Univ. Ser. A 23 (1987), 35-37. | Zbl 0666.54022
[003] [4] A. Katok, Local properties of hyperbolic sets (in Russian), appendix to the Russian edition of: Z. Nitecki, Differentiable Dynamics, Mir, Moscow, 1975.
[004] [5] K. Meyer and G. Sell, An analytic proof of the Shadowing Lemma, Funkc. Ekvac. 30 (1987), 127-133. | Zbl 0643.58015
[005] [6] A. Morimoto, Some stabilities of group automorphisms, in: Manifolds and Lie Groups, Progr. Math. 14, Birkhäuser, 1981, 283-299.
[006] [7] J. Ombach, The Shadowing Lemma in the linear case, Univ. Iagell. Acta Math., to appear. | Zbl 0831.58043
[007] [8] M. Shub, Global Stability of Dynamical Systems, Springer, 1987.