The paper concerns properties of holomorphic functions satisfying more than one equation of Schiffer type (-equation). Such equations are satisfied, in particular, by functions that are extremal (in various classes of univalent functions) with respect to functionals depending on a finite number of coefficients.
@article{bwmeta1.element.bwnjournal-article-apmv58z3p237bwm, author = {J. Macura and J. \'Sladkowska}, title = {On functions satisfying more than one equation of Schiffer type}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {237-252}, zbl = {0808.30015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p237bwm} }
J. Macura; J. Śladkowska. On functions satisfying more than one equation of Schiffer type. Annales Polonici Mathematici, Tome 58 (1993) pp. 237-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p237bwm/
[000] [1] A. K. Bahtin, Some properties of functions of class S, Ukrain. Mat. Zh. 33 (1981), 154-159 (in Russian); English transl.: Ukrainian Math. J. 33 (1981), 122-126.
[001] [2] Y. Kubota, On extremal problems which correspond to algebraic univalent functions, Kodai Math. Sem. Rep. 25 (1973), 412-428. | Zbl 0278.30015
[002] [3] Z. J. Jakubowski and W. Majchrzak, On functions realizing the maximum of two functionals at a time, Serdica 10 (1984), 337-343. | Zbl 0576.30013
[003] [4] A. Rost and J. Śladkowska, Sur les fonctions de Bieberbach-Eilenberg satisfaisant à plus qu'une équation de type de Schiffer, Demonstratio Math., to appear.
[004] [5] H. L. Royden, The coefficient problem for bounded schlicht functions, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 637-662. | Zbl 0041.40802
[005] [6] A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, Amer. Math. Soc., 1950. | Zbl 0049.06003
[006] [7] J. Śladkowska, Sur les fonctions univalentes, bornées, satisfaisant deux au moins -équations, Demonstratio Math. 11 (1978), 1-28. | Zbl 0393.30011
[007] [8] V. V. Starkov, Bounded univalent functions realizing the extrema of two coefficients functionals at a time, in: Proc. XIth Instructional Conf. on the Theory of Extremal Problems, Łódź 1990, 31-33.
[008] [9] K. Tochowicz, Functions which satisfy the differential equation of Schiffer type, Zeszyty Nauk. Politechn. Rzeszowskiej Mat. Fiz. 38 (6) (1987), 103-113. | Zbl 0684.34006