The purpose of this paper is to study the periodic boundary value problem -u''(t) = f(t,u(t),u'(t)), u(0) = u(2π), u'(0) = u'(2π) when f satisfies the Carathéodory conditions. We show that a generalized upper and lower solution method is still valid, and develop a monotone iterative technique for finding minimal and maximal solutions.
@article{bwmeta1.element.bwnjournal-article-apmv58z3p221bwm, author = {Ming-Xing Wang and Alberto Cabada and Juan J. Nieto}, title = {Monotone method for nonlinear second order periodic boundary value problems with Carath\'eodory functions}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {221-235}, zbl = {0789.34027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p221bwm} }
Ming-Xing Wang; Alberto Cabada; Juan J. Nieto. Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions. Annales Polonici Mathematici, Tome 58 (1993) pp. 221-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z3p221bwm/
[000] [1] A. Adje, Sur et sous-solutions généralisées et problèmes aux limites du second ordre, Bull. Soc. Math. Belgique Sér. B 42 (1990), 347-368. | Zbl 0724.34018
[001] [2] J. Bebernes, A simple alternative problem for finding periodic solutions of second order ordinary differential systems, Proc. Amer. Math. Soc. 42 (1974), 121-127. | Zbl 0286.34055
[002] [3] J. Bebernes and R. Fraker, A priori bounds for boundary sets, ibid. 29 (1971), 313-318. | Zbl 0215.44003
[003] [4] J. Bebernes and W. Kelley, Some boundary value problems for generalized differential equations, SIAM J. Appl. Math. 25 (1973), 16-23. | Zbl 0237.34101
[004] [5] J. Bebernes and M. Martelli, On the structure of the solution set for periodic boundary value problems, Nonlinear Anal. 4 (1980), 821-830. | Zbl 0453.34019
[005] [6] J. Bebernes and K. Schmitt, Periodic boundary value problems for systems of second order differential equations, J. Differential Equations 13 (1973), 32-47. | Zbl 0253.34020
[006] [7] A. Cabada and J. J. Nieto, A generalization of the monotone iterative technique for nonlinear second-order periodic boundary value problems, J. Math. Anal. Appl. 151 (1990), 181-189. | Zbl 0719.34039
[007] [8] A. Cabada and J. J. Nieto, Extremal solutions of second-order nonlinear periodic boundary value problems, Appl. Math. Comput. 40 (1990), 135-145. | Zbl 0723.65056
[008] [9] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, New York, 1985. | Zbl 0658.35003
[009] [10] J. J. Nieto, Nonlinear second-order periodic boundary value problems with Carathé- odory functions, Applicable Anal. 34 (1989), 111-128.
[010] [11] D. R. Smart, Fixed Points Theorems, Cambridge University Press, Cambridge, 1974. | Zbl 0297.47042
[011] [12] M. X. Wang, Monotone method for nonlinear periodic boundary value problems, J. Beijing Inst. Technol. 9 (1989), 74-81 (in Chinese). | Zbl 0717.34021