We study the existence and nonexistence of positive solutions of nonlinear elliptic systems in an annulus with Dirichlet boundary conditions. In particular, a priori bounds are obtained. We also study a general multiple linear eigenvalue problem on a bounded domain.
@article{bwmeta1.element.bwnjournal-article-apmv58z2p201bwm, author = {Robert Dalmasso}, title = {Positive solutions of nonlinear elliptic systems}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {201-212}, zbl = {0791.35014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p201bwm} }
Robert Dalmasso. Positive solutions of nonlinear elliptic systems. Annales Polonici Mathematici, Tome 58 (1993) pp. 201-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p201bwm/
[000] [1] T. B. Benjamin, A unified theory of conjugate flows, Philos. Trans. Roy. Soc. 269 A (1971), 587-643. | Zbl 0226.76037
[001] [2] Ph. Clément, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), 923-940. | Zbl 0818.35027
[002] [3] D. G. de Figueiredo, P.-L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. 61 (1982), 41-63. | Zbl 0452.35030
[003] [4] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. | Zbl 0425.35020
[004] [5] M. A. Krasnosel'skiĭ, Fixed points of cone-compressing and cone-extending operators, Soviet Math. Dokl. 1 (1960), 1285-1288. | Zbl 0098.30902
[005] [6] L. A. Peletier and R. C. A. M. van der Vorst, Existence and non-existence of positive solutions of non-linear elliptic systems and the biharmonic equation, Differential Integral Equations 5 (1992), 747-767. | Zbl 0758.35029
[006] [7] F. Rellich, Darstellung der Eigenwerte von Δu + λu = 0 durch ein Randintegral, Math. Z. 46 (1940), 635-636.
[007] [8] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations 42 (1981), 400-413. | Zbl 0486.35032
[008] [9] R. C. A. M. van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal. 116 (1991), 375-398. | Zbl 0796.35059