A note on the converse of the Lefschetz theorem for G-maps
M. Izydorek ; A. Vidal
Annales Polonici Mathematici, Tome 58 (1993), p. 177-183 / Harvested from The Polish Digital Mathematics Library

The purpose of this note is to prove the converse of the Lefschetz fixed point theorem (CLT) together with an equivariant version of the converse of the Lefschetz deformation theorem (CDT) in the category of finite G-simplicial complexes, where G is a finite group.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:262435
@article{bwmeta1.element.bwnjournal-article-apmv58z2p177bwm,
     author = {M. Izydorek and A. Vidal},
     title = {A note on the converse of the Lefschetz theorem for G-maps},
     journal = {Annales Polonici Mathematici},
     volume = {58},
     year = {1993},
     pages = {177-183},
     zbl = {0780.55002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p177bwm}
}
M. Izydorek; A. Vidal. A note on the converse of the Lefschetz theorem for G-maps. Annales Polonici Mathematici, Tome 58 (1993) pp. 177-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p177bwm/

[000] [B-G] L. Borsari and D. Gonçalves, G-deformations to fixed point free maps via obstruction theory, preprint.

[001] [Bo] C. Bowszyc, On the components of the principal part of a manifold with a finite group action, Fund. Math. 115 (1983), 229-233. | Zbl 0523.57027

[002] [B] R. Brown, The Lefschetz Fixed Point Theorem, Scott and Foresman, 1971. | Zbl 0216.19601

[003] [E-S] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, 1952. | Zbl 0047.41402

[004] [F-Wo] E. Fadell and P. Wong, On deforming G-maps to be fixed point free, Pacific J. Math. 132 (1988), 277-281. | Zbl 0612.58007

[005] [V] A. Vidal, On equivariant deformation of maps, Publ. Mat. 32 (1988), 115-121. | Zbl 0649.57003

[006] [W] D. Wilczyński, Fixed point free equivariant homotopy classes, Fund. Math. 123 (1984), 47-60. | Zbl 0548.55002

[007] [Wo] P. Wong, Equivariant Nielsen fixed point theory for G-maps, Pacific J. Math. 150 (1991), 179-200. | Zbl 0691.55004