New sufficient conditions for asymptotic stability of Markov operators are given. These criteria are applied to a class of Volterra type integral operators with advanced argument.
@article{bwmeta1.element.bwnjournal-article-apmv58z2p161bwm, author = {Karol Baron and Andrzej Lasota}, title = {Asymptotic properties of Markov operators defined by Volterra type integrals}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {161-175}, zbl = {0839.47021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p161bwm} }
Karol Baron; Andrzej Lasota. Asymptotic properties of Markov operators defined by Volterra type integrals. Annales Polonici Mathematici, Tome 58 (1993) pp. 161-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p161bwm/
[000] [1] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Math. Stud. 21, Van Nostrand, 1969.
[001] [2] H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math. 51 (1990), 155-166. | Zbl 0721.34094
[002] [3] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228. | Zbl 0767.47012
[003] [4] U. Krengel, Ergodic Theorems, de Gruyter, 1985.
[004] [5] A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62. | Zbl 0529.92011
[005] [6] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985. | Zbl 0606.58002
[006] [7] A. Lasota, M. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, J. Math. Biol. 30 (1992), 775-800. | Zbl 0763.92001
[007] [8] J. Malczak, An application of Markov operators in differential and integral equations, Rend. Sem. Mat. Univ. Padova, in press. | Zbl 0795.60071
[008] [9] J. Socała, On the existence of invariant densities for Markov operators, Ann. Polon. Math. 48 (1988), 51-56. | Zbl 0657.60089
[009] [10] J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465-475. | Zbl 0716.92017
[010] [11] J. J. Tyson and K. B. Hannsgen, Global asymptotic stability of the size distribution in probabilistic model of the cell cycle, J. Math. Biol. 22 (1985), 61-68. | Zbl 0558.92012
[011] [12] J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, J. Math. Biol. 23 (1986), 231-246. | Zbl 0582.92020