We present some extension of the concept of an invariant mean to a space of vector-valued mappings defined on a semigroup. Next, we apply it to the study of the stability of some functional equation.
@article{bwmeta1.element.bwnjournal-article-apmv58z2p147bwm, author = {Roman Badora}, title = {On some generalized invariant means and their application to the stability of the Hyers-Ulam type}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {147-159}, zbl = {0787.43003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p147bwm} }
Roman Badora. On some generalized invariant means and their application to the stability of the Hyers-Ulam type. Annales Polonici Mathematici, Tome 58 (1993) pp. 147-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p147bwm/
[000] [1] M. A. Albert and J. A. Baker, Functions with bounded n-th differences, Ann. Polon. Math. 43 (1983), 93-103. | Zbl 0436.39005
[001] [2] K. Baron, Functions with differences in subspaces, in: Proceedings of the 18th International Symposium on Functional Equations, University of Waterloo, Faculty of Mathematics, Waterloo, Ontario, Canada, 1980.
[002] [3] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. | Zbl 0078.29402
[003] [4] M. M. Day, Fixed point theorem for compact convex sets, ibid. 5 (1961), 585-590. | Zbl 0097.31705
[004] [5] M. M. Day, Normed Linear Spaces, Springer, Berlin 1973.
[005] [6] J. Dixmier, Les moyennes invariantes dans les semigroupes et leurs applications, Acta Sci. Math. (Szeged) 12 (1950), 213-227. | Zbl 0037.15501
[006] [7] G. L. Forti and J. Schwaiger, Stability of homomorphisms and completeness, C. R. Math. Rep. Acad. Sci. Canada 11 (6) (1989), 215-220. | Zbl 0697.39013
[007] [8] Z. Gajda, A solution to a problem of J. Schwaiger, Aequationes Math. 32 (1987), 38-44.
[008] [9] Z. Gajda, Invariant means and representations of semigroups in the theory of functional equations, Prace Naukowe Uniwersytetu Śląskiego 1273, Katowice 1992. | Zbl 0925.39005
[009] [10] Z. Gajda, W. Smajdor and A. Smajdor, A theorem of the Hahn-Banach type and its applications, Ann. Polon. Math. 57 (1992), 243-252. | Zbl 0774.46003
[010] [11] F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand Math. Stud. 16, New York 1969. | Zbl 0174.19001
[011] [12] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer, Berlin 1963. | Zbl 0115.10603
[012] [13] D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. | Zbl 0061.26403
[013] [14] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers (PWN) and Silesian University Press, Warszawa-Kraków-Katowice 1985.
[014] [15] Z. Moszner, Sur la stabilité de l'équation d'homomorphisme, Aequationes Math. 29 (1985), 290-306. | Zbl 0583.39012
[015] [16] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28-46. | Zbl 0035.35402
[016] [17] J. von Neumann, Zur allgemeinen Theorie der Masses, Fund. Math. 13 (1929), 73-116.
[017] [18] K. Nikodem, On Jensen's functional equation for set-valued functions, Rad. Mat. 3 (1987), 23-33. | Zbl 0628.39013
[018] [19] J. Rätz, On approximately additive mappings, in: General Inequalities 2, Internat. Ser. Numer. Math. 47, Birkhäuser, Basel 1980, 233-251. | Zbl 0433.39014
[019] [20] L. Székelyhidi, Remark 17, Report of Meeting, Aequationes Math. 29 (1985), 95-96.
[020] [21] L. Székelyhidi, Note on Hyers's theorem, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 127-129. | Zbl 0604.39007
[021] [22] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York 1960. | Zbl 0137.24201