Consider a nonlinear differential-functional equation (1) Au + f(x,u(x),u) = 0 where , , G is a bounded domain with (0 < α < 1) boundary, the operator A is strongly uniformly elliptic in G and u is a real function. For the equation (1) we consider the Dirichlet problem with the boundary condition (2) u(x) = h(x) for x∈ ∂G. We use Chaplygin’s method [5] to prove that problem (1), (2) has at least one regular solution in a suitable class of functions. Using the method of upper and lower functions, coupled with the monotone iterative technique, H. Amman [3], D. H. Sattinger [13] (see also O. Diekmann and N. M. Temme [6], G. S. Ladde, V. Lakshmikantham, A. S. Vatsala [8], J. Smoller [15]) and I. P. Mysovskikh [11] obtained similar results for nonlinear differential equations of elliptic type. A special case of (1) is the integro-differential equation . Interesting results about existence and uniqueness of solutions for this equation were obtained by H. Ugowski [17].
@article{bwmeta1.element.bwnjournal-article-apmv58z2p139bwm, author = {Stanis\l aw Brzychczy}, title = {Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {139-146}, zbl = {0787.35114}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p139bwm} }
Stanisław Brzychczy. Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type. Annales Polonici Mathematici, Tome 58 (1993) pp. 139-146. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z2p139bwm/
[00000] [1] R. A. Adams, Sobolev Spaces, Academic Press, New York 1975.
[00001] [2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623-727. | Zbl 0093.10401
[00002] [3] H. Amman, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.
[00003] [4] J. Appell and P. Zabreĭko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge 1990.
[00004] [5] S. Brzychczy, Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differentsial'nye Uravneniya 22 (1986), 705-708 (in Russian). | Zbl 0613.35041
[00005] [6] O. Diekmann and N. M. Temme, Nonlinear Diffusion Problems, MC Syllabus 28, Mathematisch Centrum, Amsterdam 1982.
[00006] [7] M. A. Krasnosel'skiĭ, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford 1963.
[00007] [8] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston 1985. | Zbl 0658.35003
[00008] [9] O. A. Ladyzhenskaya and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Academic Press, New York 1968.
[00009] [10] M. Malec, Unicité des solutions d'un système non linéaire d'équations elliptiques contenant des fonctionnelles, Boll. Un. Mat. Ital. (6) 2-A (1983), 321-329. | Zbl 0554.35043
[00010] [11] I. P. Mysovskikh, Application of Chaplygin's method to the Dirichlet problem for elliptic equations of a special type, Dokl. Akad. Nauk SSSR 99 (1) (1954), 13-15 (in Russian).
[00011] [12] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York 1984. | Zbl 0549.35002
[00012] [13] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000. | Zbl 0223.35038
[00013] [14] J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 38 (1934), 257-282. | Zbl 0008.25502
[00014] [15] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York 1983. | Zbl 0508.35002
[00015] [16] N. M. Temme (ed.), Nonlinear Analysis, Vol. II, MC Syllabus 26.2, Mathematisch Centrum, Amsterdam 1976.
[00016] [17] H. Ugowski, On integro-differential equations of parabolic and elliptic type, Ann. Polon. Math. 22 (1970), 255-275. | Zbl 0192.45802
[00017] [18] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco 1964.
[00018] [19] J. Wloka, Funktionalanalysis und Anwendungen, de Gruyter, Berlin 1971.
[00019] [20] J. Wloka, Grundräume und verallgemeinerte Funktionen, Lecture Notes in Math. 82, Springer, Berlin 1969.