We give sufficient conditions for the strong asymptotic stability of the distributions of dynamical systems with multiplicative perturbations. We apply our results to iterated function systems.
@article{bwmeta1.element.bwnjournal-article-apmv58z1p85bwm, author = {Katarzyna Horbacz}, title = {Dynamical systems with multiplicative perturbations: the strong convergence of measures}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {85-93}, zbl = {0782.47007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p85bwm} }
Katarzyna Horbacz. Dynamical systems with multiplicative perturbations: the strong convergence of measures. Annales Polonici Mathematici, Tome 58 (1993) pp. 85-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p85bwm/
[000] [1] M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), 243-275. | Zbl 0588.28002
[001] [2] M. F. Barnsley, V. Ervin, D. Hardin and J. Lancaster, Solution of an inverse problem for fractals and other sets, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 1975-1977. | Zbl 0613.28008
[002] [3] K. Horbacz, Dynamical systems with multiplicative perturbations, Ann. Polon. Math. 50 (1989), 93-102. | Zbl 0687.60064
[003] [4] K. Horbacz, Asymptotic stability of dynamical systems with multiplicative perturbations, ibid. 50 (1989), 209-218. | Zbl 0703.47033
[004] [5] A. Lasota and J. Tyrcha, On the strong convergence to equilibrium for randomly perturbed dynamical systems, ibid. 53 (1991), 79-89. | Zbl 0722.60068
[005] [6] A. Lasota and M. C. Mackey, Stochastic perturbation of dynamical systems: The weak convergence of measures, J. Math. Anal. Appl. 138 (1989), 232-248. | Zbl 0668.93081
[006] [7] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, Cambridge 1985. | Zbl 0606.58002
[007] [8] M. Podhorodyński, Stability of Markov processes, Univ. Iagell. Acta Math. 27 (1988), 285-296.