Dynamical systems with multiplicative perturbations: the strong convergence of measures
Katarzyna Horbacz
Annales Polonici Mathematici, Tome 58 (1993), p. 85-93 / Harvested from The Polish Digital Mathematics Library

We give sufficient conditions for the strong asymptotic stability of the distributions of dynamical systems with multiplicative perturbations. We apply our results to iterated function systems.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:262256
@article{bwmeta1.element.bwnjournal-article-apmv58z1p85bwm,
     author = {Katarzyna Horbacz},
     title = {Dynamical systems with multiplicative perturbations: the strong convergence of measures},
     journal = {Annales Polonici Mathematici},
     volume = {58},
     year = {1993},
     pages = {85-93},
     zbl = {0782.47007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p85bwm}
}
Katarzyna Horbacz. Dynamical systems with multiplicative perturbations: the strong convergence of measures. Annales Polonici Mathematici, Tome 58 (1993) pp. 85-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p85bwm/

[000] [1] M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), 243-275. | Zbl 0588.28002

[001] [2] M. F. Barnsley, V. Ervin, D. Hardin and J. Lancaster, Solution of an inverse problem for fractals and other sets, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 1975-1977. | Zbl 0613.28008

[002] [3] K. Horbacz, Dynamical systems with multiplicative perturbations, Ann. Polon. Math. 50 (1989), 93-102. | Zbl 0687.60064

[003] [4] K. Horbacz, Asymptotic stability of dynamical systems with multiplicative perturbations, ibid. 50 (1989), 209-218. | Zbl 0703.47033

[004] [5] A. Lasota and J. Tyrcha, On the strong convergence to equilibrium for randomly perturbed dynamical systems, ibid. 53 (1991), 79-89. | Zbl 0722.60068

[005] [6] A. Lasota and M. C. Mackey, Stochastic perturbation of dynamical systems: The weak convergence of measures, J. Math. Anal. Appl. 138 (1989), 232-248. | Zbl 0668.93081

[006] [7] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, Cambridge 1985. | Zbl 0606.58002

[007] [8] M. Podhorodyński, Stability of Markov processes, Univ. Iagell. Acta Math. 27 (1988), 285-296.