If C is a non-empty convex subset of a real linear space E, p: E → ℝ is a sublinear function and f:C → ℝ is concave and such that f ≤ p on C, then there exists a linear function g:E → ℝ such that g ≤ p on E and f ≤ g on C. In this result of Hirano, Komiya and Takahashi we replace the sublinearity of p by convexity.
@article{bwmeta1.element.bwnjournal-article-apmv58z1p47bwm, author = {Jolanta Plewnia}, title = {A generalization of the Hahn-Banach theorem}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {47-51}, zbl = {0805.46003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p47bwm} }
Jolanta Plewnia. A generalization of the Hahn-Banach theorem. Annales Polonici Mathematici, Tome 58 (1993) pp. 47-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p47bwm/
[000] [1] A. Alexiewicz, Functional Analysis, Monografie Mat. 49, PWN, Warszawa 1969 (in Polish).
[001] [2] N. Hirano, H. Komiya and W. Takahashi, A generalization of the Hahn-Banach theorem, J. Math. Anal. Appl. 88 (1982), 333-340. | Zbl 0509.46003
[002] [3] Z. Kominek, On additive and convex functionals, Rad. Mat. 3 (1987), 267-279. | Zbl 0643.39006
[003] [4] H. König, On the abstract Hahn-Banach theorem due to Rodé, Aequationes Math. 34 (1987), 89-95. | Zbl 0636.46005
[004] [5] K. Nikodem, On the support of midconvex operators, Aequationes Math. 42 (1991), 182-189. | Zbl 0747.39006
[005] [6] G. Rodé, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. (Basel) 31 (1978), 474-481. | Zbl 0402.46003