Let X(t) be a diffusion process satisfying the stochastic differential equation dX(t) = a(X(t))dW(t) + b(X(t))dt. We analyse the asymptotic behaviour of p(t) = ProbX(t) ≥ 0 as t → ∞ and construct an equation such that and .
@article{bwmeta1.element.bwnjournal-article-apmv58z1p37bwm, author = {Ryszard Rudnicki}, title = {Strangely sweeping one-dimensional diffusion}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {37-45}, zbl = {0779.60067}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p37bwm} }
Ryszard Rudnicki. Strangely sweeping one-dimensional diffusion. Annales Polonici Mathematici, Tome 58 (1993) pp. 37-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p37bwm/
[000] [1] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, Berlin 1972. | Zbl 0242.60003
[001] [2] A. K. Gushchin and V. P. Mikhailov, The stabilization of the solution of the Cauchy problem for a parabolic equation with one space variable, Trudy Mat. Inst. Steklov. 112 (1971), 181-202 (in Russian).
[002] [3] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228. | Zbl 0767.47012
[003] [4] R. Rudnicki, Asymptotical stability in L¹ of parabolic equations, J. Differential Equations, in press. | Zbl 0815.35034
[004] [5] Z. Schuss, Theory and Applications of Stochastic Differential Equations, Wiley, New York 1980.