We determine all natural transformations of the rth order cotangent bundle functor into in the following cases: r = s, r < s, r > s. We deduce that all natural transformations of into itself form an r-parameter family linearly generated by the pth power transformations with p =1,...,r.
@article{bwmeta1.element.bwnjournal-article-apmv58z1p29bwm, author = {Jan Kurek}, title = {Natural transformations of higher order cotangent bundle functors}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {29-35}, zbl = {0778.58003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p29bwm} }
Jan Kurek. Natural transformations of higher order cotangent bundle functors. Annales Polonici Mathematici, Tome 58 (1993) pp. 29-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p29bwm/
[000] [1] J. Gancarzewicz, Differential Geometry, PWN, Warszawa 1987 (in Polish).
[001] [2] I. Kolář, Some natural operators in differential geometry, in: Proc. Conf. Diff. Geom. and its Applications, Brno 1986, Kluwer, Dordrecht 1987, 91-110.
[002] [3] I. Kolář and G. Vosmanska, Natural transformations of higher order tangent bundles and jet spaces, Časopis Pěst. Mat. 114 (2) (1989), 181-186. | Zbl 0678.58002
[003] [4] I. Kolář, P. Michor and J. Slovak, Natural Operations in Differential Geometry, to appear. | Zbl 0782.53013
[004] [5] J. Kurek, On natural operators on sectorform fields, Časopis Pěst. Mat. 115 (3) (1990), 232-239. | Zbl 0706.58003