We show a relation between the Kobayashi pseudodistance of a holomorphic fiber bundle and the Kobayashi pseudodistance of its base. Moreover, we prove that a holomorphic fiber bundle is taut iff both the fiber and the base are taut.
@article{bwmeta1.element.bwnjournal-article-apmv58z1p1bwm, author = {Do Duc Thai and Nguyen Le Huong}, title = {A note on the Kobayashi pseudodistance and the tautness of holomorphic fiber bundles}, journal = {Annales Polonici Mathematici}, volume = {58}, year = {1993}, pages = {1-5}, zbl = {0784.32025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p1bwm} }
Do Duc Thai; Nguyen Le Huong. A note on the Kobayashi pseudodistance and the tautness of holomorphic fiber bundles. Annales Polonici Mathematici, Tome 58 (1993) pp. 1-5. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p1bwm/
[000] [1] A. Eastwood, A propos des variétés hyperboliques complètes, C. R. Acad. Sci. Paris 280 (1975), 1071-1075. | Zbl 0301.32021
[001] [2] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York 1970. | Zbl 0207.37902
[002] [3] S. Kobayashi, Intrinsic distance, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357-416. | Zbl 0346.32031
[003] [4] S. Lang, Introduction to Hyperbolic Complex Spaces, Springer, 1987.
[004] [5] S. Nag, Hyperbolic manifolds admitting holomorphic fiberings, Bull. Austral. Math. Soc. 26 (1982), 181-184. | Zbl 0504.32022
[005] [6] H. L. Royden, Holomorphic fiber bundles with hyperbolic fiber, Proc. Amer. Math. Soc. 43 (1974), 311-312. | Zbl 0284.32017