A finiteness theorem for Riemannian submersions
Paweł G. Walczak
Annales Polonici Mathematici, Tome 57 (1992), p. 283-290 / Harvested from The Polish Digital Mathematics Library

Given some geometric bounds for the base space and the fibres, there is a finite number of conjugacy classes of Riemannian submersions between compact Riemannian manifolds.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:275915
@article{bwmeta1.element.bwnjournal-article-apmv57z3p283bwm,
     author = {Pawe\l\ G. Walczak},
     title = {A finiteness theorem for Riemannian submersions},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {283-290},
     zbl = {0777.53030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z3p283bwm}
}
Paweł G. Walczak. A finiteness theorem for Riemannian submersions. Annales Polonici Mathematici, Tome 57 (1992) pp. 283-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z3p283bwm/

[000] [A] M. T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), 429-445. | Zbl 0711.53038

[001] [AC] M. T. Anderson and J. Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature and Ln/2-norm of curvature bounded, Geom. Funct. Anal. 1 (1991), 231-252. | Zbl 0764.53026

[002] [BK] P. Buser and H. Karcher, Gromov's almost flat manifolds, Astérisque 81 (1981), 1-148. | Zbl 0459.53031

[003] [C] J. Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61-74. | Zbl 0194.52902

[004] [Ep] D. B. A. Epstein, Transversally hyperbolic 1-dimensional foliations, Astérisque 116 (1984), 53-69.

[005] [E] R. H. Escobales, Riemannian submersions with totally geodesic fibres, J. Differential Geom. 10 (1975), 253-276. | Zbl 0301.53024

[006] [GP] K. Grove and P. Petersen V, Bounding homotopy types by geometry, Ann. of Math. 128 (1988), 195-208. | Zbl 0655.53032

[007] [GPW] K. Grove, P. Petersen V and J.-Y. Wu, Geometric finiteness theorems via controlled topology, Invent. Math. 99 (1990), 205-213. | Zbl 0747.53033

[008] [HK] E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Ecole Norm. Sup. 11 (1978), 451-470. | Zbl 0416.53027

[009] [M] P. Molino, Riemannian Foliations, Birkhäuser, Boston 1988.

[010] [N] B. O'Neill, The fundamental equation of a submersion, Michigan Math. J. 13 (1966), 459-469.

[011] [P] S. Peters, Cheeger's finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. Reine Angew. Math. 349 (1984), 77-82. | Zbl 0524.53025

[012] [Rl] B. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132. | Zbl 0122.16604

[013] [R2] B. Reinhart, The Differential Geometry of Foliations, Springer, Berlin 1983.