We show that one can drop an important hypothesis of the saddle point theorem without affecting the result. We then show how this leads to stronger results in applications.
@article{bwmeta1.element.bwnjournal-article-apmv57z3p269bwm, author = {Martin Schechter}, title = {A generalization of the saddle point method with applications}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {269-281}, zbl = {0780.35001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z3p269bwm} }
Martin Schechter. A generalization of the saddle point method with applications. Annales Polonici Mathematici, Tome 57 (1992) pp. 269-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z3p269bwm/
[000] [AH] H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh 84A (1979), 145-151. | Zbl 0416.35029
[001] [AP] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1973), 231-247. | Zbl 0288.35020
[002] [AR] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. | Zbl 0273.49063
[003] [BBF] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with 'strong' resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012. | Zbl 0522.58012
[004] [BF] H. Berestycki and D. G. de Figueiredo, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations 6 (1981), 91-120. | Zbl 0468.35043
[005] [BP] M. Berger and E. Podolak, On the solution of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1975), 837-846. | Zbl 0329.35026
[006] [BS] M. S. Berger and M. Schechter, On the solvability of semilinear gradient operator equations, Adv. in Math. 25 (1977), 97-132. | Zbl 0354.47025
[007] [BN] H. Brezis and L. Nirenberg, Remarks on finding critical points, to appear. | Zbl 0751.58006
[008] [Cac1] N. P. Cac, On an elliptic boundary value problem at double resonance, J. Math. Anal. Appl. 132 (1988), 473-483. | Zbl 0682.35043
[009] [Cac2] N. P. Cac, On the number of solutions of an elliptic boundary value problem with jumping nonlinearity, Nonlinear Anal. 13 (1989), 341-351. | Zbl 0717.35031
[010] [Cac3] N. P. Cac, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue, J. Differential Equations 80 (1989), 379-404. | Zbl 0713.35036
[011] [Cac4] N. P. Cac, On a boundary value problem with non-smooth jumping non-linearity, to appear.
[012] [Cas] A. Castro, Hammerstein integral equations with indefinite kernel, Internat. J. Math. Math. Sci. 1 (1978), 187-201. | Zbl 0391.45007
[013] [D] E. N. Dancer, Multiple solutions of asymptotically homogeneous problems, to appear. | Zbl 0850.35043
[014] [DF] D. G. de Figueiredo, Positive solutions of some classes of semilinear elliptic problems, in: Proc. Sympos. Pure Math. 45, Amer. Math. Soc., 1986, 371-379.
[015] [DFG] D. G. de Figueiredo et J. P. Gossez, Conditions de non-résonance pour certains problèmes elliptiques semi-linéaires, C. R. Acad. Sci. Paris 302 (1986), 543-545. | Zbl 0596.35049
[016] [DFLN] D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence results for positive solutions of semilinear elliptic equations, J. Math. Pures Appl. 61 (1982), 41-63. | Zbl 0452.35030
[017] [GK] T. Gallouet et O. Kavian, Résultats d'existence et de non-existence pour certains problèmes demi linéaires d l'infini, Ann. Fac. Sci. Toulouse Math. 3 (1981), 201-246. | Zbl 0495.35001
[018] [H] P. Hess, On a nonlinear elliptic boundary value problem of the Ambrosetti-Prodi type, Boll. Un. Mat. Ital. 17A (1980), 189-192. | Zbl 0519.35028
[019] [KW] J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. | Zbl 0325.35038
[020] [LL] E. A. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623. | Zbl 0193.39203
[021] [La] A. C. Lazer, Introduction to multiplicity theory for boundary value problems with asymmetric nonlinearities, in: Partial Differential Equations, F. Cordoso et al. (eds.), Lecture Notes in Math. 1324, Springer, 1988, 137-165.
[022] [LM1] A. C. Lazer and P. J. McKenna, Multiplicity results for a class of semilinear elliptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985), 371-395. | Zbl 0584.35053
[023] [LM2] A. C. Lazer and P. J. McKenna, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues, I, II, Comm. Partial Differential Equations 10 (1985), 107-150; 11 (1986), 1653-1676. | Zbl 0572.35036
[024] [LM3] A. C. Lazer and P. J. McKenna, Multiplicity of solutions of nonlinear boundary value problems with nonlinearities crossing several hiqher eigenvalues, J. Reine Angew. Math. 368 (1986), 184-200. | Zbl 0588.35036
[025] [Lin] S. S. Lin, Some results for semilinear differential equations at resonance, J. Math. Anal. Appl. 93 (1983), 574-592. | Zbl 0531.47039
[026] [LM] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems I, Springer, Berlin 1972.
[027] [Lio] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441-457.
[028] [MW] J. Mawhin and M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), 431-453. | Zbl 0678.35091
[029] [N1] L. Nirenberg, Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc. 4 (1981), 267-302. | Zbl 0468.47040
[030] [N2] L. Nirenberg, Variational methods in nonlinear problems, in: Lecture Notes in Math. 1365, Springer, 1988, 100-119.
[031] [P] E. Podolak, On the range of operator equations with an asymptotically nonlinear term, Indiana Univ. Math. J. 25 (1976), 1127-1137. | Zbl 0353.47035
[032] [Ra1] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, in: Eigenvalues of Nonlinear Problems, G. Prodi (ed.), C.I.M.E., Ed. Cremonese, Roma 1975, 141-195.
[033] [Ra2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., 1986.
[034] [Ru] B. Ruf, On nonlinear elliptic boundary value problems with jumping nonlinearities, Ann. Mat. Pura Appl. 128 (1980), 133-151.
[035] [Sc1] M. Schechter, Nonlinear elliptic boundary value problems at strong resonance, Amer. J. Math. 112 (1990), 439-460. | Zbl 0721.35023
[036] [Sc2] M. Schechter, Solution of nonlinear problems at resonance, Indiana Univ. Math. J. 39 (1990), 1061-1080. | Zbl 0796.35058
[037] [Sc3] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc. 331 (1992), 681-703. | Zbl 0757.35026
[038] [Sc4] M. Schechter, Nonlinear elliptic boundary value problems at resonance, Nonlinear Anal. 14 (1990), 889-903. | Zbl 0708.35033
[039] [Sc5] M. Schechter, A variation of the mountain pass lemma and applications, J. London Math. Soc. (2) 44 (1991), 491-502. | Zbl 0756.35032
[040] [Sc6] M. Schechter, The Hampwile theorem for nonlinear eigenvalues, Duke Math. J. 59 (1989), 325-335. | Zbl 0701.47036
[041] [So] S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 143-156. | Zbl 0583.35044
[042] [Ta] E. Tarafdar, An approach to nonlinear elliptic boundary value problems, J. Austral. Math. Soc. 34 (1983), 316-335. | Zbl 0533.47054
[043] [Th1] K. Thews, A reduction method for some nonlinear Dirichlet problems, Nonlinear Anal. 3 (1979), 794-813.
[044] [Th2] K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy Soc. Edinburgh 85A (1980), 119-129.