Let G be a second countable locally compact nilpotent group. It is shown that for every norm completely mixing (n.c.m.) random walk μ, αμ + (1-α)ν is n.c.m. for 0 < α ≤ 1, ν ∈ P(G). In particular, a generic stochastic convolution operator on G is n.c.m.
@article{bwmeta1.element.bwnjournal-article-apmv57z3p265bwm, author = {R. R\k ebowski}, title = {Most random walks on nilpotent groups are mixing}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {265-268}, zbl = {0784.47015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z3p265bwm} }
R. Rębowski. Most random walks on nilpotent groups are mixing. Annales Polonici Mathematici, Tome 57 (1992) pp. 265-268. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z3p265bwm/
[000] [1] R. Azencott, Espaces de Poisson des groupes localement compacts, Lecture Notes in Math. 148, Springer, Berlin 1970. | Zbl 0239.60008
[001] [2] W. Bartoszek, On the residuality of mixing by convolution probabilities, preprint. | Zbl 0785.43001
[002] [3] S. Glasner, On Choquet-Deny measures, Ann. Inst. Henri Poincaré 12 (1976), 1-10. | Zbl 0349.60006
[003] [4] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 2, Springer, Berlin 1970. | Zbl 0213.40103
[004] [5] H. Heyer, Probability Measures on Locally Compact Groups, Springer, Berlin 1977. | Zbl 0376.60002
[005] [6] A. Iwanik and R. Rębowski, Structure of mixing and category of complete mixing for stochastic operators, Ann. Polon. Math. 56 (1992), 233-242. | Zbl 0786.47004
[006] [7] B. Jamison and S. Orey, Markov chains recurrent in the sense of Harris, Z. Wahrsch. Verw. Gebiete 8 (1967), 41-48. | Zbl 0153.19802
[007] [8] D. Revuz, Markov Chains, North-Holland Math. Library, 1975.
[008] [9] J. Rosenblatt, Ergodic and mixing random walks on locally compact groups, Math. Ann. 257 (1981), 31-42. | Zbl 0451.60011