Differential conditions to verify the Jacobian Conjecture
Ludwik M. Drużkowski ; Halszka K. Tutaj
Annales Polonici Mathematici, Tome 57 (1992), p. 253-263 / Harvested from The Polish Digital Mathematics Library

Let F be a polynomial mapping of ℝ², F(O) = 0. In 1987 Meisters and Olech proved that the solution y(·) = 0 of the autonomous system of differential equations ẏ = F(y) is globally asymptotically stable provided that the jacobian of F is everywhere positive and the trace of the matrix of the differential of F is everywhere negative. In particular, the mapping F is then injective. We give an n-dimensional generalization of this result.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:275935
@article{bwmeta1.element.bwnjournal-article-apmv57z3p253bwm,
     author = {Ludwik M. Dru\.zkowski and Halszka K. Tutaj},
     title = {Differential conditions to verify the Jacobian Conjecture},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {253-263},
     zbl = {0778.34038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z3p253bwm}
}
Ludwik M. Drużkowski; Halszka K. Tutaj. Differential conditions to verify the Jacobian Conjecture. Annales Polonici Mathematici, Tome 57 (1992) pp. 253-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z3p253bwm/

[000] [B] N. E. Barabanov, On Kalman's problem, Sibirsk. Mat. Zh. 29 (3) (1988), 2-11 (in Russian).

[001] [BR] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203. | Zbl 0107.14602

[002] [BCR] J. Bochnak, M. Coste et M.-F. Roy, Géométrie Algébrique Réelle, Springer, Berlin 1987.

[003] [D] F. Dillen, Polynomials with constant Hessian determinant, J. Pure Appl. Algebra 71 (1991), 13-18. | Zbl 0741.12001

[004] [E] A. van den Essen, A note on Meisters and Olech's proof of the global asymptotic stability Jacobian conjecture, Pacific J. Math. 151 (1991), 351-356. | Zbl 0752.12002

[005] [H] P. Hartman, Ordinary Differential Equations, Wiley, New York 1964. | Zbl 0125.32102

[006] [HO] P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc. 104 (1962), 154-178.

[007] [KR] K. Kurdyka and K. Rusek, Surjectivity of certain injective semialgebraic transformations of ℝⁿ, Math. Z. 200 (1988), 141-148. | Zbl 0641.14010

[008] [Ł] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel 1991. | Zbl 0747.32001

[009] [MY] L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J. 12 (1960), 305-317. | Zbl 0096.28802

[010] [MO] G. H. Meisters and C. Olech, Solution of the global asymptotic stability Jacobian conjecture for the polynomial case, in: Analyse Mathématique et Applications, Gauthier-Villars, Paris 1988, 373-381. | Zbl 0668.34048

[011] [MO1] G. H. Meisters and C. Olech, A Jacobian condition for injectivity of differentiable plane maps, Ann. Polon. Math. 51 (1990), 249-254. | Zbl 0734.26008

[012] [Md] D. Mumford, Algebraic Geometry, I. Complex Projective Varieties, Springer, Berlin 1976. | Zbl 0356.14002

[013] [O] C. Olech, On the global stability of an autonomous system on the plane, Contributions Differential Equations 1 (1963), 389-400.

[014] [P] T. Parthasarathy, On Global Univalence, Lecture Notes in Math. 977, Springer, Berlin 1983.