On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form
Sorin Dragomir ; Mauro Capursi
Annales Polonici Mathematici, Tome 57 (1992), p. 99-103 / Harvested from The Polish Digital Mathematics Library

We classify generic Cauchy-Riemann submanifolds (of a Kaehlerian manifold) whose fundamental form is preserved by any local geodesic symmetry.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262310
@article{bwmeta1.element.bwnjournal-article-apmv57z2p99bwm,
     author = {Sorin Dragomir and Mauro Capursi},
     title = {On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {99-103},
     zbl = {0766.53046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p99bwm}
}
Sorin Dragomir; Mauro Capursi. On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form. Annales Polonici Mathematici, Tome 57 (1992) pp. 99-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p99bwm/

[000] [1] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Agnew. Math. 325 (1981), 28-67. | Zbl 0503.53013

[001] [2] S. Dragomir, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, I, II, Geom. Dedicata 28 (1988), 181-197; Atti Sem. Mat. Fis. Univ. Modena 37 (1989), 1-11. | Zbl 0659.53041

[002] [3] S. Dragomir, On submanifolds of Hopf manifolds, Israel J. Math. (2) 61 (1988), 199-210. | Zbl 0649.53031

[003] [4] A. Gray, The volume of a small geodesic ball in a Riemannian manifold, Michigan Math. J. 20 (1973), 329-344. | Zbl 0279.58003

[004] [5] K. Sekigawa and L. Vanhecke, Symplectic geodesic symmetries on Kaehler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95-103. | Zbl 0589.53068

[005] [6] I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263-284. | Zbl 0447.53032

[006] [7] K. Yano, On a structure defined by a tensor field of type (1,1) satisfying f³+f=0, Tensor (N.S.) 14 (1963), 99-109. | Zbl 0122.40705

[007] [8] K. Yano and M. Kon, Generic submanifolds, Ann. Mat. Pura Appl. 123 (1980), 59-92. | Zbl 0441.53043

[008] [9] K. Yano and M. Kon, Cr Submanifolds of Kaehlerian and Sasakian Manifolds, Progr. Math. 30, Birkhäuser, Boston 1983. | Zbl 0496.53037