We define the Foiaş solutions of the transport equation and we prove that the strong asymptotic stability of the Foiaş solutions is equivalent to the asymptotic stability of the solutions of the transport equation in L¹.
@article{bwmeta1.element.bwnjournal-article-apmv57z2p193bwm, author = {Jan Malczak}, title = {On the strong convergence to equilibrium of the Foia\c s solutions of the transport equation}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {193-203}, zbl = {0766.45007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p193bwm} }
Jan Malczak. On the strong convergence to equilibrium of the Foiaş solutions of the transport equation. Annales Polonici Mathematici, Tome 57 (1992) pp. 193-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p193bwm/
[000] [DuSc] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience Publ., New York 1968.
[001] [DłLa] T. Dłotko and A. Lasota, Statistical stability and the lower bound function technique, in: Semigroups, Theory and Applications, Vol. I, H. Brezis, M. Crandall and F. Kappel (eds.), Longman Scientific and Technical, 1987, 75-95.
[002] [Klac] J. Klaczak, Stability of a transport equation, Ann. Polon. Math. 49 (1988), 69-80. | Zbl 0673.45009
[003] [LaMa] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, 1985. | Zbl 0606.58002