A saturation theorem for combinations of Bernstein-Durrmeyer polynomials
P. N. Agrawal ; Vijay Gupta
Annales Polonici Mathematici, Tome 57 (1992), p. 157-164 / Harvested from The Polish Digital Mathematics Library

We prove a local saturation theorem in ordinary approximation for combinations of Durrmeyer's integral modification of Bernstein polynomials.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262423
@article{bwmeta1.element.bwnjournal-article-apmv57z2p157bwm,
     author = {P. N. Agrawal and Vijay Gupta},
     title = {A saturation theorem for combinations of Bernstein-Durrmeyer polynomials},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {157-164},
     zbl = {0766.41025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p157bwm}
}
P. N. Agrawal; Vijay Gupta. A saturation theorem for combinations of Bernstein-Durrmeyer polynomials. Annales Polonici Mathematici, Tome 57 (1992) pp. 157-164. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p157bwm/

[000] [1] P. N. Agrawal and V. Gupta, Simultaneous approximation by linear combination of the modified Bernstein polynomials, Bull. Soc. Math. Grèce 30 (1989), 21-29 (1990). | Zbl 0747.41014

[001] [2] P. N. Agrawal and V. Gupta, Inverse theorem for linear combinations of modified Bernstein polynomials, preprint. | Zbl 0833.41011

[002] [3] M. M. Derriennic, Sur l'approximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifiés, J. Approx. Theory 31 (1981), 325-343. | Zbl 0475.41025

[003] [4] Z. Ditzian and K. Ivanov, Bernstein-type operators and their derivatives, ibid. 56 (1989), 72-90.

[004] [5] J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Application à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.

[005] [6] H. S. Kasana and P. N. Agrawal, On sharp estimates and linear combinations of modified Bernstein polynomials, Bull. Soc. Math. Belg. Sér. B 40 (1) (1988), 61-71. | Zbl 0658.41009

[006] [7] C. P. May, Saturation and inverse theorems for combinations of a class of exponential type operators, Canad. J. Math. 28 (1976), 1224-1250. | Zbl 0342.41018

[007] [8] B. Wood, Lp-approximation by linear combinations of integral Bernstein-type operators, Anal. Numér. Théor. Approx. 13 (1) (1984), 65-72.

[008] [9] B. Wood, Uniform approximation by linear combinations of bernstein-type polynomials, J. Approx. Theory 41 (1984), 51-55. | Zbl 0563.41019