Nevanlinna theory on the p-adic plane
Capi Corrales Rodrigáñez
Annales Polonici Mathematici, Tome 57 (1992), p. 135-147 / Harvested from The Polish Digital Mathematics Library

Let 𝕂 be a complete and algebraically closed non-Archimedean valued field. Following ideas of Marc Krasner and Philippe Robba, we define K-meromorphic functions from 𝕂 to 𝕂. We show that the Nevanlinna theory for functions of a single complex variable may be extended to those functions (and consequently to meromorphic functions).

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262389
@article{bwmeta1.element.bwnjournal-article-apmv57z2p135bwm,
     author = {Capi Corrales Rodrig\'a\~nez},
     title = {Nevanlinna theory on the p-adic plane},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {135-147},
     zbl = {0765.30031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p135bwm}
}
Capi Corrales Rodrigáñez. Nevanlinna theory on the p-adic plane. Annales Polonici Mathematici, Tome 57 (1992) pp. 135-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p135bwm/

[000] [1] W. W. Adams and E. G. Straus, Non-Archimedean analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), 418-424. | Zbl 0215.13202

[001] [2] I. N. Baker, The existence of fixpoints of entire functions, Math. Z. 73 (1960), 280-284. | Zbl 0129.29102

[002] [3] I. N. Baker and F. Gross, On factorizing entire functions, Proc. London Math. Soc. (3) 18 (1968), 69-76. | Zbl 0159.10002

[003] [4] F. Gross, Entire solutions to the functional equation a(b(z)) = a(g(z)) + c, J. Indian Math. Soc. 32 (1968), 199-206. | Zbl 0186.21403

[004] [5] F. Gross, On factorization of meromorphic functions, Trans. Amer. Math. Soc. 131 (1968), 215-221. | Zbl 0159.36702

[005] [6] F. Gross and C. F. Oswood, On fixed points of composite entire functions, J. London Math. Soc. (2) 28 (1983), 57-61.

[006] [7] H. Hasse, Number Theory, Springer, 1980.

[007] [8] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford 1964.

[008] [9] H. H. Khoai, On p-adic meromorphic functions, Duke Math. J. 50 (1983), 695-711. | Zbl 0544.30039

[009] [10] M. Krasner, Rapport sur le prolongement analytique dans les corps valués complets par la méthode des éléments analytiques quasi connexes, Bull. Soc. Math. France Mém. 39-40 (1974), 131-254.

[010] [11] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méro- morphes, Gauthier-Villars, Paris 1929.

[011] [12] P. Robba, Fonctions analytiques sur les corps valués ultramétriques complets, Astérisque 10 (1973), 109-218. | Zbl 0289.12110

[012] [13] S. L. Segal, Nine Introductions in Complex Analysis, North-Holland Math. Stud. 53, 1981, 163-204. | Zbl 0482.30002

[013] [14] C.-C. Yang, Factorization Theory of Meromorphic Functions and Related Topics, Marcel Dekker, New York 1982.