This paper is a contribution to the axiomatic approach to geometric objects. A collection of a manifold M, a topological space N, a group homomorphism E: Diff(M) → Homeo(N) and a function π: N → M is called a quasi-natural bundle if (1) π ∘ E(f) = f ∘ π for every f ∈ Diff(M) and (2) if f,g ∈ Diff(M) are two diffeomorphisms such that f|U = g|U for some open subset U of M, then E(f)|π^{-1}(U) = E(g)|π^{-1}(U). We give conditions which ensure that π: N → M is continuous. In particular, if (M,N,E,π) is a quasi-natural bundle with N Hausdorff, then π is continuous. Using this result, we classify (quasi) prolongation functors with compact fibres.
@article{bwmeta1.element.bwnjournal-article-apmv57z2p105bwm, author = {W\l odzimierz M. Mikulski}, title = {Continuity of projections of natural bundles}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {105-120}, zbl = {0812.55008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p105bwm} }
Włodzimierz M. Mikulski. Continuity of projections of natural bundles. Annales Polonici Mathematici, Tome 57 (1992) pp. 105-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z2p105bwm/
[000] [1] J. Aczél und S. Gołąb, Funktionalgleichungen der Theorie der geometrischen Objekte, PWN, Warszawa 1960.
[001] [2] D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles, Proc. London Math. Soc. (3) 38 (1979), 219-236. | Zbl 0409.58001
[002] [3] J. Gancarzewicz, Differential Geometry, Bibl. Mat. 64, Warszawa 1987 (in Polish).
[003] [4] J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Dissertationes Math. 212 (1983). | Zbl 0517.53016
[004] [5] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer, New York 1973. | Zbl 0294.58004
[005] [6] I. Kolář, Functorial prolongations of Lie groups and their actions, Časopis Pěst. Mat. 108 (1983), 289-293. | Zbl 0531.58003
[006] [7] K. Masuda, Homomorphism of the Lie algebras of vector fields, J. Math. Soc. Japan 28 (1976), 506-528. | Zbl 0324.57015
[007] [8] W. M. Mikulski, Locally determined associated spaces, J. London Math. Soc. (2) 32 (1985), 357-364.
[008] [9] D. Montgomery and L. Zippin, Transformation Groups, Interscience, New York 1955. | Zbl 0068.01904
[009] [10] A. Nijenhuis, Natural bundles and their general properties, in: Diff. Geom. in honor of K. Yano, Kinokuniya, Tokyo 1972, 317-334.
[010] [11] R. S. Palais and C. L. Terng, Natural bundles have finite order, Topology 16 (1978), 271-277. | Zbl 0359.58004
[011] [12] S. E. Salvioli, On the theory of geometric objects, J. Differential Geom. 7(1972), 257-278. | Zbl 0276.53013
[012] [13] J. Slovák, Smooth structures on fibre jet spaces, Czechoslovak Math. J. 36 (111) (1986), 358-375. | Zbl 0629.58001