An existence theorem is proved for the scalar convolution type integral equation .
@article{bwmeta1.element.bwnjournal-article-apmv57z1p91bwm, author = {Janusz Traple}, title = {Positive solutions of a renewal equation}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {91-97}, zbl = {0766.45002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p91bwm} }
Janusz Traple. Positive solutions of a renewal equation. Annales Polonici Mathematici, Tome 57 (1992) pp. 91-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p91bwm/
[000] [1] K. L. Cooke and J. L. Kaplan, A periodicity threshold theorem for epidemics and population growth, Math. Biosci. 31 (1976), 87-104. | Zbl 0341.92012
[001] [2] P. Kasprowski, On positive solutions of nonlinear convolution equations, unpublished paper. | Zbl 0547.28010
[002] [3] W. P. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps. II. Systematic differences in contact rates and stochastic effects, Amer. J. Epidemiol. 98 (1973), 469-482.
[003] [4] K. E. Swick, A model of single species population growth, SIAM J. Math. Anal. 7 (1976), 565-576. | Zbl 0343.92011