Positive solutions of a renewal equation
Janusz Traple
Annales Polonici Mathematici, Tome 57 (1992), p. 91-97 / Harvested from The Polish Digital Mathematics Library

An existence theorem is proved for the scalar convolution type integral equation x(t)=-h(t-s)f(s,x(s))ds.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262384
@article{bwmeta1.element.bwnjournal-article-apmv57z1p91bwm,
     author = {Janusz Traple},
     title = {Positive solutions of a renewal equation},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {91-97},
     zbl = {0766.45002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p91bwm}
}
Janusz Traple. Positive solutions of a renewal equation. Annales Polonici Mathematici, Tome 57 (1992) pp. 91-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p91bwm/

[000] [1] K. L. Cooke and J. L. Kaplan, A periodicity threshold theorem for epidemics and population growth, Math. Biosci. 31 (1976), 87-104. | Zbl 0341.92012

[001] [2] P. Kasprowski, On positive solutions of nonlinear convolution equations, unpublished paper. | Zbl 0547.28010

[002] [3] W. P. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps. II. Systematic differences in contact rates and stochastic effects, Amer. J. Epidemiol. 98 (1973), 469-482.

[003] [4] K. E. Swick, A model of single species population growth, SIAM J. Math. Anal. 7 (1976), 565-576. | Zbl 0343.92011